Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Solar cell turns windows into generators

Abstract:
Imagine a world where the windows of high-rise office buildings are powerful energy producers, offering its inhabitants much more than some fresh air, light and a view.

For the past four years a team of researchers from Flinders University has been working to make this dream a reality - and now the notion of solar-powered windows could be coming to a not too distant future near you.

Solar cell turns windows into generators

Adelaide, Australia | Posted on March 20th, 2012

As part of his just-completed PhD, Dr Mark Bissett (pictured) from the School of Chemical and Physical Sciences has developed a revolutionary solar cell using carbon nanotubes.

A promising alternative to traditional silicon-based solar cells, carbon nanotubes are cheaper to make and more efficient to use than their energy-sapping, silicon counterparts.

"Solar power is actually the most expensive type of renewable energy - in fact the silicon solar cells we see on peoples' roofs are very expensive to produce and they also use a lot of electricity to purify," Dr Bissett said.

"The overall efficiency of silicon solar cells are about 10 per cent and even when they're operating at optimal efficiency it could take eight to 15 years to make back the energy that it took to produce them in the first place because they're produced using fossil fuels," he said.

Dr Bissett said the new, low-cost carbon nanotubes are transparent, meaning they can be "sprayed" onto windows without blocking light, and they are also flexible so they can be weaved into a range of materials including fabric - a concept that is already being explored by advertising companies.

While the amount of power generated by solar windows would not be enough to completely offset the energy consumption of a standard office building, Dr Bissett said they still had many financial and environmental advantages.

"In a new building, or one where the windows are being replaced anyway, adding transparent solar cells to the glass would be a relatively small cost since the cost of the glass, frames and installation would be the same with or without the solar component," Dr Bissett said.

"It's basically like tinting the windows except they're able to produce electricity, and considering office buildings don't have a lot of roof space for solar panels it makes sense to utilise the many windows they do have instead."

Dr Bissett said the technology mimics photosynthesis, the process whereby plants obtain energy from the sun.

"A solar cell is created by taking two sheets of electrically conductive glass and sandwiching a layer of functionalised single-walled carbon nanotubes between the glass sheets," he said.

"When light shines on the cell, electrons are generated within the carbon nanotubes and these can be used to power electrical devices."

Although small prototypes have been developed in the lab, he said the next step would be to test the carbon cells on an "industrial stage".

If all goes to plan, the material could be on the market within 10 years.

"When we first started the research we had no idea if it would work because we were the first in the world to try it so it's pretty exciting that we've proved the concept, and hopefully it will be commercially available in a few year's time," Dr Bissett said.

Dr Bissett is a winner of Flinders inaugural Best Student Paper Award, a now annual program which aims to recognise excellence in student research across the University.

####

For more information, please click here

Copyright © Flinders University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Dartmouth team creates new method to control quantum systems May 24th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanotubes/Buckyballs/Fullerenes

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Discoveries

Dartmouth team creates new method to control quantum systems May 24th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Announcements

Dartmouth team creates new method to control quantum systems May 24th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Energy

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Home

Industrial Nanotech, Inc. Expands Distribution Network in US and Internationally May 9th, 2016

A View Through Wood Shows Futuristic Applications: Transparent wood made at UMD could create new windows, cars and solar panels May 5th, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Transparent wood could one day help brighten homes and buildings March 31st, 2016

Solar/Photovoltaic

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Solliance realizes first up-scaled Perovskite based PV modules with 10% efficiency: Holst Centre, imec and ECN pave the road to upscaling Perovskite PV modules May 10th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic