Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Imec and Holst Centre develop low-temperature organic-inorganic complementary thin-film technology

Complementary TFT: (a) Output characteristics of typical solution-processed oxide and evaporated pentacene transistors, (b) inverter characteristics of the hybrid technology at different power voltages. The inset shows a photograph of an inverter. (c) Cross section of the hybrid technology.
Complementary TFT: (a) Output characteristics of typical solution-processed oxide and evaporated pentacene transistors, (b) inverter characteristics of the hybrid technology at different power voltages. The inset shows a photograph of an inverter. (c) Cross section of the hybrid technology.

Abstract:
Imec and Holst Centre report the fabrication of high-performance solution-processed n-type metal-oxide thin-film transistors (TFTs) after post-annealing at temperatures as low as 250°C. Using these oxide n-TFTs in combination with pentacene p-TFTs, a completely scalable integration process is developed for hybrid inorganic-organic complementary logic on foil. A bidirectional RFID circuit, recently presented at ISSCC, proves the ability of the technology to realize complex, fast and low-voltage circuitry.

Imec and Holst Centre develop low-temperature organic-inorganic complementary thin-film technology

Leuven, Belgium | Posted on March 16th, 2012

The development of a thin-film equivalent for Si CMOS circuitry is one of the key objectives of thin-film electronics. Combining n-channel transistors and p-channel transistors in a CMOS architecture allows low static power dissipation, simplified and more robust circuit design and low noise. A very promising approach to realize complementary thin-film logic is to integrate oxide n-TFTs with organic p-TFTs. The preferred technique to make n-type metal-oxide TFTs is solution-based processing, allowing a simple and high-throughput fabrication process. However, solution processing of metal oxides is typically done at high temperatures (350-500°C), making the technique incompatible with flexible substrates such as polyimide.

Imec and Holst Centre have now demonstrated high-performance solution-based n-type metal oxide TFTs processed directly on polyimide foil and annealed at 250°C. The n-type indium-based oxide transistors were photolithographically fabricated in a bottom Au gate - top Ti S/D contact geometry with channel lengths down to 2-10μm and 100nm of high-k Al2O3 acting as the gate dielectric. The oxide active layer is deposited by spin-coating and subsequently baked in air at a temperature as low as 250°C. Excellent transistor performances have been achieved on polyimide foil with saturation mobilities exceeding 2cm²/Vs, leakage currents below 1pA and Ion/Ioff ratios up to 108. This solution-based unipolar oxide TFT technology is well suited for application in e.g. active-matrix organic light-emitting diode (AMOLED) backplanes.

In a next step, a hybrid organic-inorganic complementary technology has been developed that combines the high-performance n-TFT with a thermally evaporated pentacene p-TFT. The latter has a mobility of up to 1cm2/Vs. A gold layer acts as the gate for both the organic p- and inorganic n-TFT, high-k Al2O3 is used to form the dielectric layer. First, the complementary TFT technology was implemented on a rigid substrate. Using this technology, hybrid complementary circuit building blocks, such as inverters and ring oscillators were realized. Supply voltages as low as 2V resulted in good circuit behavior, indicating that the presented technology is suited for future low-voltage applications. This complementary TFT technology enabled to make the world's first RFID circuit (using TFTs) that allows reader-talks-first communication, as recently presented at ISSCC 2012.

####

For more information, please click here

Contacts:
Barbara Kalkis
Maestro Marketing & PR

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019

The smallest skeletons in the marine world observed in 3D by synchrotron techniques February 15th, 2019

Thin films

Eco-friendly waterproof polymer films synthesized using novel method October 31st, 2018

Rice U. scientists form flat tellurium: Two-dimensional element shows promise for solar cells and other optoelectronics October 26th, 2018

How to mass produce cell-sized robots: Technique from MIT could lead to tiny, self-powered devices for environmental, industrial, or medical monitoring October 24th, 2018

Extracting energy from a 60 nanometers thin layer October 5th, 2018

Chip Technology

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019

Spintronics by 'straintronics': Switching superferromagnetism with electric-field induced strain February 15th, 2019

Picosun’s ALD encapsulation prevents electronics degradation February 15th, 2019

Discoveries

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019

The smallest skeletons in the marine world observed in 3D by synchrotron techniques February 15th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Announcements

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Spintronics by 'straintronics': Switching superferromagnetism with electric-field induced strain February 15th, 2019

Alliances/Trade associations/Partnerships/Distributorships

John Chong of Kionix Named Chair of MEMS & Sensors Industry Group Governing Council February 6th, 2019

TOCHA will take a topological approach to the next generation of electronic, photonic and phononic devices January 31st, 2019

Elliot Scientific now representing Digital Holographic Microscopy company Lyncée Tec SA in the UK and Eire January 22nd, 2019

ULVAC Inc., and Oxford Instruments Plasma Technology collaborate to bring Atomic Scale Processing solutions to the Japanese Power and RF markets January 18th, 2019

RFID

Nanowire 'inks' enable paper-based printable electronics: Highly conductive films make functional circuits without adding high heat January 4th, 2017

Conformal transfer of graphene for reproducible device fabrication August 11th, 2015

GLOBALFOUNDRIES Launches Industry’s First 22nm FD-SOI Technology Platform: 22FDX offers the best combination of performance, power consumption and cost for IoT, mainstream mobile, RF connectivity, and networking July 13th, 2015

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project