Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Imec and Holst Centre develop low-temperature organic-inorganic complementary thin-film technology

Complementary TFT: (a) Output characteristics of typical solution-processed oxide and evaporated pentacene transistors, (b) inverter characteristics of the hybrid technology at different power voltages. The inset shows a photograph of an inverter. (c) Cross section of the hybrid technology.
Complementary TFT: (a) Output characteristics of typical solution-processed oxide and evaporated pentacene transistors, (b) inverter characteristics of the hybrid technology at different power voltages. The inset shows a photograph of an inverter. (c) Cross section of the hybrid technology.

Abstract:
Imec and Holst Centre report the fabrication of high-performance solution-processed n-type metal-oxide thin-film transistors (TFTs) after post-annealing at temperatures as low as 250°C. Using these oxide n-TFTs in combination with pentacene p-TFTs, a completely scalable integration process is developed for hybrid inorganic-organic complementary logic on foil. A bidirectional RFID circuit, recently presented at ISSCC, proves the ability of the technology to realize complex, fast and low-voltage circuitry.

Imec and Holst Centre develop low-temperature organic-inorganic complementary thin-film technology

Leuven, Belgium | Posted on March 16th, 2012

The development of a thin-film equivalent for Si CMOS circuitry is one of the key objectives of thin-film electronics. Combining n-channel transistors and p-channel transistors in a CMOS architecture allows low static power dissipation, simplified and more robust circuit design and low noise. A very promising approach to realize complementary thin-film logic is to integrate oxide n-TFTs with organic p-TFTs. The preferred technique to make n-type metal-oxide TFTs is solution-based processing, allowing a simple and high-throughput fabrication process. However, solution processing of metal oxides is typically done at high temperatures (350-500°C), making the technique incompatible with flexible substrates such as polyimide.

Imec and Holst Centre have now demonstrated high-performance solution-based n-type metal oxide TFTs processed directly on polyimide foil and annealed at 250°C. The n-type indium-based oxide transistors were photolithographically fabricated in a bottom Au gate - top Ti S/D contact geometry with channel lengths down to 2-10μm and 100nm of high-k Al2O3 acting as the gate dielectric. The oxide active layer is deposited by spin-coating and subsequently baked in air at a temperature as low as 250°C. Excellent transistor performances have been achieved on polyimide foil with saturation mobilities exceeding 2cm²/Vs, leakage currents below 1pA and Ion/Ioff ratios up to 108. This solution-based unipolar oxide TFT technology is well suited for application in e.g. active-matrix organic light-emitting diode (AMOLED) backplanes.

In a next step, a hybrid organic-inorganic complementary technology has been developed that combines the high-performance n-TFT with a thermally evaporated pentacene p-TFT. The latter has a mobility of up to 1cm2/Vs. A gold layer acts as the gate for both the organic p- and inorganic n-TFT, high-k Al2O3 is used to form the dielectric layer. First, the complementary TFT technology was implemented on a rigid substrate. Using this technology, hybrid complementary circuit building blocks, such as inverters and ring oscillators were realized. Supply voltages as low as 2V resulted in good circuit behavior, indicating that the presented technology is suited for future low-voltage applications. This complementary TFT technology enabled to make the world's first RFID circuit (using TFTs) that allows reader-talks-first communication, as recently presented at ISSCC 2012.

####

For more information, please click here

Contacts:
Barbara Kalkis
Maestro Marketing & PR

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Thin films

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

High efficiency solar power conversion allowed by a novel composite material: A composite thin film developed at INRS improves significantly solar cells' power conversion efficiency April 10th, 2018

Researchers develop nanoparticle films for high-density data storage: April 3rd, 2018

Chip Technology

Future electronic components to be printed like newspapers July 20th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

Leti and Soitec Launch a New Substrate Innovation Center to Develop Engineered Substrate Solutions: Industry-inclusive hub promotes early collaboration and learning from substrate to system level July 11th, 2018

Discoveries

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Announcements

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Alliances/Trade associations/Partnerships/Distributorships

Leti and Oscaro Partner on Leti’s New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Leti and Soitec Launch a New Substrate Innovation Center to Develop Engineered Substrate Solutions: Industry-inclusive hub promotes early collaboration and learning from substrate to system level July 11th, 2018

Leti & Partners Launch Pilot Program to Assess New Perception Sensors for Autonomous Vehicles July 5th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

RFID

Nanowire 'inks' enable paper-based printable electronics: Highly conductive films make functional circuits without adding high heat January 4th, 2017

Conformal transfer of graphene for reproducible device fabrication August 11th, 2015

GLOBALFOUNDRIES Launches Industry’s First 22nm FD-SOI Technology Platform: 22FDX offers the best combination of performance, power consumption and cost for IoT, mainstream mobile, RF connectivity, and networking July 13th, 2015

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project