Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Chip with IR-UWB technology enables low-power, high-quality wireless audio streaming

UWB: test board with IR-UWB chip developed by imec and Holst Centre
UWB: test board with IR-UWB chip developed by imec and Holst Centre

Abstract:
mec and Holst Centre have reached a breakthrough in low-power wireless streaming of high-quality music, for example between a smartphone and a hearing aid, or between the two earpieces of a headset. The new solution is a fully chip-integrated ultralow-power IR-UWB (impulse-radio ultra-wideband) solution for use in the worldwide available 6-10GHz band. The IR-UWB link streams high-quality music over a distance of up to 20m. It uses up to 5 times less energy than a Bluetooth connection. In addition, the link is more resilient against fades and interference from other RF systems.

Chip with IR-UWB technology enables low-power, high-quality wireless audio streaming

Leuven, Belgium | Posted on March 16th, 2012


The new radio can be used for binaural audio streaming between 2 earpieces of a headset or a hearing aid. This is a technical breakthrough because the propagation channel for RF communication from one ear to the other is known as being extremely challenging. In a wider context, the IR-UWB link today covers a distance of 20m for an indoor channel. This distance enables the wireless streaming of high quality audio between a headset and for instance a streaming device anywhere in the living room.

IR-UWB communication is especially suited for short-range communication and positioning sensors. The large bandwidth improves the resilience against fades, resulting in a superior communication reliability. This is especially so compared to narrowband solutions. Also, spreading information over a wide bandwidth decreases the power spectral density, thus reducing the interference with other systems and lowering the probability of interception. IR-UWB is also suitable for positioning sensors; the transmission of very short pulses, with only nanosecond duration, allows for centimeter-range positioning accuracy.

Imec and Holst Centre's solution consists of a transmitter, receiver front-end, and receiver digital baseband. The transmitter delivers 13dBm peak power, with an average power consumption of 3.3mW. The receiver front-end shows -88dBm sensitivity at 1Mbps. A digital synchronization algorithm enables real-time duty cycling, resulting in a mean power consumption of 3mW. A DCO with 100ppm frequency accuracy and a baseband frequency tracking algorithm ensure the coherent reception. A 75dB link budget with a data rate of 1Mbps is achieved.

Companies can have access to this technology by joining imec and Holst Centre's R&D program on ultralow-power wireless systems.

####

For more information, please click here

Contacts:
Barbara Kalkis
Maestro Marketing & PR

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

Chip Technology

Nanometrics to Announce Second Quarter Financial Results on July 23, 2015 July 2nd, 2015

The quantum middle man July 2nd, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

Emergence of a 'devil's staircase' in a spin-valve system July 1st, 2015

Announcements

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Alliances/Trade associations/Partnerships/Distributorships

Harris & Harris Group Portfolio Company, AgBiome, Announces Partnership to Accelerate the Discovery of Next Generation Insect-Resistant Crops July 1st, 2015

Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent June 28th, 2015

Dyesol Joins Solliance as an Industrial Partner June 17th, 2015

The European project SVARNISH, a step forward in the food packaging sector June 11th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project