Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > EU-funded BOOM project on SOI photonic integration technology successfully concluded

BOOM: Four channel label extractor with four high-finesse ring resonators integrated with InGaAs photodetectors.
BOOM: Four channel label extractor with four high-finesse ring resonators integrated with InGaAs photodetectors.

Abstract:
Imec and its partners successfully completed ‘BOOM', a EU-funded project coordinated by the National Technical University of Athens (NTUA). By systematically advancing silicon-on-insulator (SOI) photonic integration technology, compact, cost-effective and power efficient components have been developed that enable photonic Tb/s capacity systems for current and new generation high-speed broadband core networks. As part of the project, imec has realized an optical label extractor consisting of a high-resolution demultiplexer integrated with highly efficient photodetectors.

EU-funded BOOM project on SOI photonic integration technology successfully concluded

Leuven, Belgium | Posted on March 15th, 2012

The European BOOM project has focused on the development of a photonic routing platform relying on hybrid SOI integrated photonic ICs to implement all the routing functionalities: label detection (imec), control signal generation (HHI, IHP), wavelength conversion (NTUA, TU/e, TU Berlin) and wavelength routing (Lionix, AMO). Finally, a routing machine with >160Gb/s aggregate capacity (NTUA, Telecom Italia Lab) was built.

This way, the project answered the growing demand for bandwidth hungry internet applications which stresses the available capacity and performance of current optical core networks. Power efficiency, physical size and equipment cost are key issues in these networks and increasingly more difficult to keep within acceptable limits. Electronic carrier routing systems consume and dissipate large amounts of electrical power and heat respectively. By bringing photonics technologies deeper and deeper within these routers their performance can be improved and power consumption can be decreased.

The imec work within the project focused on the optical label detector. In the proposed routing architecture the optical data packets are labeled with a wavelength code, which has to be extracted from the packet and sent to the routing unit. The label extractor consists of an optical demultiplexer with very high resolution - 12.5GHz - fabricated on the imec silicon photonics platform and integrated with high efficiency photodetectors. Reaching the required resolution turned out to be very challenging and required an in depth study of silicon microring resonators. The required specifications could be reached using single ring resonator based filters. The ring resonators have integrated resistors, which allow fine tuning of the wavelength channels (bottom electrodes) through the thermo-optic effect. They are connected to evanescently coupled InGaAs photodetectors using the heterogeneous integration technology developed by INTEC, imec's associated laboratory at Ghent University. The detectors had an efficiency of close to 1A/W and were operating at the specified speed of 1GBit/s (up to 5GBit/s). Finally the device was packaged in collaboration with Fraunhofer IZM group (Berlin). The device is now ready for operation in a system test bed.

The results obtained by imec in the project and in particular the exhaustive study on the microring resonators are not only relevant for realizing the optical label extractor. They also form an important input for the imec optical interconnect program which requires high performance demultiplexers for increasing the bandwidth in optical chip-to-chip links. Further they can be used in optical sensors and non-linear devices.

####

For more information, please click here

Contacts:
Barbara Kalkis
Maestro Marketing & PR

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Announcements

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Photonics/Optics/Lasers

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

Hexagonal boron nitride semiconductors enable cost-effective detection of neutron signals: Texas Tech University researchers demonstrate hexagonal boron nitride semiconductors as a cost-effective alternative for inspecting overseas cargo containers entering US ports August 17th, 2016

Alliances/Trade associations/Partnerships/Distributorships

Thomas Swan and NGI announce unique partnership July 28th, 2016

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic