Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > EU-funded BOOM project on SOI photonic integration technology successfully concluded

BOOM: Four channel label extractor with four high-finesse ring resonators integrated with InGaAs photodetectors.
BOOM: Four channel label extractor with four high-finesse ring resonators integrated with InGaAs photodetectors.

Abstract:
Imec and its partners successfully completed ‘BOOM', a EU-funded project coordinated by the National Technical University of Athens (NTUA). By systematically advancing silicon-on-insulator (SOI) photonic integration technology, compact, cost-effective and power efficient components have been developed that enable photonic Tb/s capacity systems for current and new generation high-speed broadband core networks. As part of the project, imec has realized an optical label extractor consisting of a high-resolution demultiplexer integrated with highly efficient photodetectors.

EU-funded BOOM project on SOI photonic integration technology successfully concluded

Leuven, Belgium | Posted on March 15th, 2012

The European BOOM project has focused on the development of a photonic routing platform relying on hybrid SOI integrated photonic ICs to implement all the routing functionalities: label detection (imec), control signal generation (HHI, IHP), wavelength conversion (NTUA, TU/e, TU Berlin) and wavelength routing (Lionix, AMO). Finally, a routing machine with >160Gb/s aggregate capacity (NTUA, Telecom Italia Lab) was built.

This way, the project answered the growing demand for bandwidth hungry internet applications which stresses the available capacity and performance of current optical core networks. Power efficiency, physical size and equipment cost are key issues in these networks and increasingly more difficult to keep within acceptable limits. Electronic carrier routing systems consume and dissipate large amounts of electrical power and heat respectively. By bringing photonics technologies deeper and deeper within these routers their performance can be improved and power consumption can be decreased.

The imec work within the project focused on the optical label detector. In the proposed routing architecture the optical data packets are labeled with a wavelength code, which has to be extracted from the packet and sent to the routing unit. The label extractor consists of an optical demultiplexer with very high resolution - 12.5GHz - fabricated on the imec silicon photonics platform and integrated with high efficiency photodetectors. Reaching the required resolution turned out to be very challenging and required an in depth study of silicon microring resonators. The required specifications could be reached using single ring resonator based filters. The ring resonators have integrated resistors, which allow fine tuning of the wavelength channels (bottom electrodes) through the thermo-optic effect. They are connected to evanescently coupled InGaAs photodetectors using the heterogeneous integration technology developed by INTEC, imec's associated laboratory at Ghent University. The detectors had an efficiency of close to 1A/W and were operating at the specified speed of 1GBit/s (up to 5GBit/s). Finally the device was packaged in collaboration with Fraunhofer IZM group (Berlin). The device is now ready for operation in a system test bed.

The results obtained by imec in the project and in particular the exhaustive study on the microring resonators are not only relevant for realizing the optical label extractor. They also form an important input for the imec optical interconnect program which requires high performance demultiplexers for increasing the bandwidth in optical chip-to-chip links. Further they can be used in optical sensors and non-linear devices.

####

For more information, please click here

Contacts:
Barbara Kalkis
Maestro Marketing & PR

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Govt.-Legislation/Regulation/Funding/Policy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Announcements

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Photonics/Optics/Lasers

Controlled electron pulses November 30th, 2016

New method for analyzing crystal structure: Exotic materials called photonic crystals reveal their internal characteristics with new method November 30th, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Single photon converter -- a key component of quantum internet November 28th, 2016

Alliances/Trade associations/Partnerships/Distributorships

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

Mechanism for sodium storage in 2-D material: Tin selenide is an effective host for storing sodium ions, making it a promising material for sodium ion batteries October 27th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

Arrowhead and Spring Bank Announce Clinical Collaboration for ARC-520 and SB 9200 in Chronic Hepatitis B October 6th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project