Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > iPower, a systematic approach to design system architectures with power, area and cost in mind from day one

The route from application specifications to optimized system design: the use of iPower in the healthcare domain for arrhytmia patient monitoring. The application specifications enable power, volume and cost diagnosis and optimization.
The route from application specifications to optimized system design: the use of iPower in the healthcare domain for arrhytmia patient monitoring. The application specifications enable power, volume and cost diagnosis and optimization.

Abstract:
mec and Holst Centre present a powerful method called iPower that allows designing system architectures with optimized power consumption, area and cost. Truly optimized performances are achieved by combining know-how on energy harvesting, low-power electronics and application-level optimization techniques. The method can be used by system designers in application domains such as healthcare, automotive and smart buildings.

iPower, a systematic approach to design system architectures with power, area and cost in mind from day one

Leuven, Belgium | Posted on March 15th, 2012

With iPower, a system architecture can be designed while taking into account power, area and cost from day one. This is useful for designing today's autonomous systems in domains like healthcare, e.g. heart and brain monitoring systems; automotive, e.g. engine monitoring and intelligent tires; and smart buildings, e.g. smart metering and lighting control. Applications like these become more complex, demand more power and at the same time must be as small and low-cost as possible.

The iPower method starts from application specifications such as system area and cost, radio transmission time periods and analog-to-digital converter sampling intervals. Based on these parameters, system power, area and cost diagnosis and optimization are carried out. The output is a selection of components that form the most optimum system. Design and testing of the optimized system may be performed to validate and improve the method's accuracy. The obtained information can be used to continuously steer the research and development cycle.

Key step in the design flow is the power, area and cost optimization. This step is illustrated in the healthcare domain for arrhytmia patient monitoring. The electronics dimensions and price are taken as input for the area and cost estimation; the application conditions for energy harvesting and electronics are the inputs for the power consumption optimization. For these input parameters, iPower then selects the lowest in power consumption components from an existing database and the power modes for each electronic component, e.g. radio, microcontroller..., so that the overall power consumption at the architectural level is minimized. This way, the power consumption of the initial arrhytmia monitoring system could be significantly reduced.

iPower combines over five years of research experience in energy harvesting and low-power electronics design with effective modeling techniques at component and architectural levels. Future work will focus on extending the applicability of the developed method towards new system architectures and application domains. In addition, more power consumption/generation, volume and cost reduction optimization techniques at architectural level will be considered.

####

For more information, please click here

Contacts:
Barbara Kalkis
Maestro Marketing & PR

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

'Life Redesigned: The Emergence of Synthetic Biology' Lecture at Brookhaven Lab on Wednesday, April 30: Biomedical Engineer James Collins to Speak for BSA Distinguished Lecture Series April 16th, 2014

ECHA Planning Workshop on Regulatory Challenges in the Risk Assessment of Nanomaterials April 16th, 2014

Lumerical files a provisional patent that extends the standard eigenmode expansion propagation technique to better address waveguide component design. Lumerical’s EME propagation tool will address a wide set of waveguide applications in silicon photonics and integrated optics April 16th, 2014

Chip Technology

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

Obducat has launched a new generation of SINDRE® Nano Imprint production system April 11th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Clean Shot at Manufacturing Course…For Less April 9th, 2014

Announcements

UT Arlington physicist creates new nanoparticle for cancer therapy April 16th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Aerotech X-Y ball-screw stage for economical high performance Planar positioning April 16th, 2014

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

Energy

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Engineers develop new materials for hydrogen storage April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

Automotive/Transportation

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Heat-conducting polymer cools hot electronic devices at 200 degrees C March 31st, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Preview of Hands-on Nanotechnology Demos at ‘Chemistry of Wine’ Fundraiser to Show Nanotech Magic April 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE