Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > iPower, a systematic approach to design system architectures with power, area and cost in mind from day one

The route from application specifications to optimized system design: the use of iPower in the healthcare domain for arrhytmia patient monitoring. The application specifications enable power, volume and cost diagnosis and optimization.
The route from application specifications to optimized system design: the use of iPower in the healthcare domain for arrhytmia patient monitoring. The application specifications enable power, volume and cost diagnosis and optimization.

Abstract:
mec and Holst Centre present a powerful method called iPower that allows designing system architectures with optimized power consumption, area and cost. Truly optimized performances are achieved by combining know-how on energy harvesting, low-power electronics and application-level optimization techniques. The method can be used by system designers in application domains such as healthcare, automotive and smart buildings.

iPower, a systematic approach to design system architectures with power, area and cost in mind from day one

Leuven, Belgium | Posted on March 15th, 2012

With iPower, a system architecture can be designed while taking into account power, area and cost from day one. This is useful for designing today's autonomous systems in domains like healthcare, e.g. heart and brain monitoring systems; automotive, e.g. engine monitoring and intelligent tires; and smart buildings, e.g. smart metering and lighting control. Applications like these become more complex, demand more power and at the same time must be as small and low-cost as possible.

The iPower method starts from application specifications such as system area and cost, radio transmission time periods and analog-to-digital converter sampling intervals. Based on these parameters, system power, area and cost diagnosis and optimization are carried out. The output is a selection of components that form the most optimum system. Design and testing of the optimized system may be performed to validate and improve the method's accuracy. The obtained information can be used to continuously steer the research and development cycle.

Key step in the design flow is the power, area and cost optimization. This step is illustrated in the healthcare domain for arrhytmia patient monitoring. The electronics dimensions and price are taken as input for the area and cost estimation; the application conditions for energy harvesting and electronics are the inputs for the power consumption optimization. For these input parameters, iPower then selects the lowest in power consumption components from an existing database and the power modes for each electronic component, e.g. radio, microcontroller..., so that the overall power consumption at the architectural level is minimized. This way, the power consumption of the initial arrhytmia monitoring system could be significantly reduced.

iPower combines over five years of research experience in energy harvesting and low-power electronics design with effective modeling techniques at component and architectural levels. Future work will focus on extending the applicability of the developed method towards new system architectures and application domains. In addition, more power consumption/generation, volume and cost reduction optimization techniques at architectural level will be considered.

####

For more information, please click here

Contacts:
Barbara Kalkis
Maestro Marketing & PR

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Chip Technology

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

'Neuron-reading' nanowires could accelerate development of drugs for neurological diseases April 12th, 2017

Nanometrics to Announce First Quarter Financial Results on May 2, 2017 April 11th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Announcements

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Energy

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Automotive/Transportation

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

BASF and Landa partner to create revolutionary pigments for automotive coatings: The alliance combines BASF innovations with Landa nano-pigment technology April 5th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX Technology Platform: Leading-edge I-fuse brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

Bio-inspired energy storage: A new light for solar power: Graphene-based electrode prototype, inspired by fern leaves, could be the answer to solar energy storage challenge April 2nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project