Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > iPower, a systematic approach to design system architectures with power, area and cost in mind from day one

The route from application specifications to optimized system design: the use of iPower in the healthcare domain for arrhytmia patient monitoring. The application specifications enable power, volume and cost diagnosis and optimization.
The route from application specifications to optimized system design: the use of iPower in the healthcare domain for arrhytmia patient monitoring. The application specifications enable power, volume and cost diagnosis and optimization.

Abstract:
mec and Holst Centre present a powerful method called iPower that allows designing system architectures with optimized power consumption, area and cost. Truly optimized performances are achieved by combining know-how on energy harvesting, low-power electronics and application-level optimization techniques. The method can be used by system designers in application domains such as healthcare, automotive and smart buildings.

iPower, a systematic approach to design system architectures with power, area and cost in mind from day one

Leuven, Belgium | Posted on March 15th, 2012

With iPower, a system architecture can be designed while taking into account power, area and cost from day one. This is useful for designing today's autonomous systems in domains like healthcare, e.g. heart and brain monitoring systems; automotive, e.g. engine monitoring and intelligent tires; and smart buildings, e.g. smart metering and lighting control. Applications like these become more complex, demand more power and at the same time must be as small and low-cost as possible.

The iPower method starts from application specifications such as system area and cost, radio transmission time periods and analog-to-digital converter sampling intervals. Based on these parameters, system power, area and cost diagnosis and optimization are carried out. The output is a selection of components that form the most optimum system. Design and testing of the optimized system may be performed to validate and improve the method's accuracy. The obtained information can be used to continuously steer the research and development cycle.

Key step in the design flow is the power, area and cost optimization. This step is illustrated in the healthcare domain for arrhytmia patient monitoring. The electronics dimensions and price are taken as input for the area and cost estimation; the application conditions for energy harvesting and electronics are the inputs for the power consumption optimization. For these input parameters, iPower then selects the lowest in power consumption components from an existing database and the power modes for each electronic component, e.g. radio, microcontroller..., so that the overall power consumption at the architectural level is minimized. This way, the power consumption of the initial arrhytmia monitoring system could be significantly reduced.

iPower combines over five years of research experience in energy harvesting and low-power electronics design with effective modeling techniques at component and architectural levels. Future work will focus on extending the applicability of the developed method towards new system architectures and application domains. In addition, more power consumption/generation, volume and cost reduction optimization techniques at architectural level will be considered.

####

For more information, please click here

Contacts:
Barbara Kalkis
Maestro Marketing & PR

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Feynman Prize Winners Announced! April 26th, 2015

New ASTM Standards Will Help Educate Present and Future Nanotechnology Workforces April 26th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

QD Vision Wins 2015 Bronze Edison Award for Color IQ™ Quantum Dot Technology April 26th, 2015

Chip Technology

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Announcements

Feynman Prize Winners Announced! April 26th, 2015

New ASTM Standards Will Help Educate Present and Future Nanotechnology Workforces April 26th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

QD Vision Wins 2015 Bronze Edison Award for Color IQ™ Quantum Dot Technology April 26th, 2015

Energy

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

Expanding the reach of metallic glass April 22nd, 2015

Automotive/Transportation

Nanoparticles Used to Improve Mechanical, Thermal Properties of Cellulose Fibers April 23rd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

Expanding the reach of metallic glass April 22nd, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Phonons, arise! Small electric voltage alters conductivity in key materials April 22nd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project