Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > iPower, a systematic approach to design system architectures with power, area and cost in mind from day one

The route from application specifications to optimized system design: the use of iPower in the healthcare domain for arrhytmia patient monitoring. The application specifications enable power, volume and cost diagnosis and optimization.
The route from application specifications to optimized system design: the use of iPower in the healthcare domain for arrhytmia patient monitoring. The application specifications enable power, volume and cost diagnosis and optimization.

Abstract:
mec and Holst Centre present a powerful method called iPower that allows designing system architectures with optimized power consumption, area and cost. Truly optimized performances are achieved by combining know-how on energy harvesting, low-power electronics and application-level optimization techniques. The method can be used by system designers in application domains such as healthcare, automotive and smart buildings.

iPower, a systematic approach to design system architectures with power, area and cost in mind from day one

Leuven, Belgium | Posted on March 15th, 2012

With iPower, a system architecture can be designed while taking into account power, area and cost from day one. This is useful for designing today's autonomous systems in domains like healthcare, e.g. heart and brain monitoring systems; automotive, e.g. engine monitoring and intelligent tires; and smart buildings, e.g. smart metering and lighting control. Applications like these become more complex, demand more power and at the same time must be as small and low-cost as possible.

The iPower method starts from application specifications such as system area and cost, radio transmission time periods and analog-to-digital converter sampling intervals. Based on these parameters, system power, area and cost diagnosis and optimization are carried out. The output is a selection of components that form the most optimum system. Design and testing of the optimized system may be performed to validate and improve the method's accuracy. The obtained information can be used to continuously steer the research and development cycle.

Key step in the design flow is the power, area and cost optimization. This step is illustrated in the healthcare domain for arrhytmia patient monitoring. The electronics dimensions and price are taken as input for the area and cost estimation; the application conditions for energy harvesting and electronics are the inputs for the power consumption optimization. For these input parameters, iPower then selects the lowest in power consumption components from an existing database and the power modes for each electronic component, e.g. radio, microcontroller..., so that the overall power consumption at the architectural level is minimized. This way, the power consumption of the initial arrhytmia monitoring system could be significantly reduced.

iPower combines over five years of research experience in energy harvesting and low-power electronics design with effective modeling techniques at component and architectural levels. Future work will focus on extending the applicability of the developed method towards new system architectures and application domains. In addition, more power consumption/generation, volume and cost reduction optimization techniques at architectural level will be considered.

####

For more information, please click here

Contacts:
Barbara Kalkis
Maestro Marketing & PR

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

MIG Takes a Roll-Up-Your-Sleeves Approach with Revamped MEMS/Sensors Technical Event -- MIG welcomes technologists to MEMS Technical Congress, emphasizes working groups and breakout sessions on emerging MEMS & sensors, tech transfer and integration March 6th, 2015

Phenom-World announces the Phenom XL, world’s fastest desktop SEM to handle large samples March 6th, 2015

Air Bearing Stage / Systems Introduced by PI at Photonics West March 6th, 2015

Consistent Scalable Functionalised Graphene Capacity March 5th, 2015

Chip Technology

French Institutes IRT Nanoelec and CMP Team up to Offer World’s First Service for Post-process 3D Technologies on Multi-Project-Wafer March 5th, 2015

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Announcements

MIG Takes a Roll-Up-Your-Sleeves Approach with Revamped MEMS/Sensors Technical Event -- MIG welcomes technologists to MEMS Technical Congress, emphasizes working groups and breakout sessions on emerging MEMS & sensors, tech transfer and integration March 6th, 2015

Phenom-World announces the Phenom XL, world’s fastest desktop SEM to handle large samples March 6th, 2015

Air Bearing Stage / Systems Introduced by PI at Photonics West March 6th, 2015

Get ready for NanoDays! March 5th, 2015

Energy

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

Automotive/Transportation

Glass coating improves battery performance: To improve lithium-sulfur batteries, researchers added glass cage-like coating and graphene oxide March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

New research could lead to more efficient electrical energy storage March 4th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

Glass coating improves battery performance: To improve lithium-sulfur batteries, researchers added glass cage-like coating and graphene oxide March 2nd, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE