Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nano spiral staircases modify light: Tailored optical material from DNA:

Although chemically alike solutions of right- and left-handed nano spiral staircases interact specifically with circular polarized light. The nano spiral staircases were built up using the DNA-origami method.

Credit: TIM Liedl / LMU
Although chemically alike solutions of right- and left-handed nano spiral staircases interact specifically with circular polarized light. The nano spiral staircases were built up using the DNA-origami method.

Credit: TIM Liedl / LMU

Abstract:
There was a lot of excitement a few years ago following the discovery of the DNA origami technique. The approach could be used to build nanoparticles of a given shape and size. However, real applications, such as nano-tweezers, remained out of reach. An international team of researchers led by Professor Tim Liedl of the Ludwig-Maximillians-Universitaet Muenchen and Professor Friedrich Simmel of the Technische Universitaet Muenchen have now succeeded in building nanoparticles using optically active DNA building blocks that can be used to modify light in very specific ways.

Nano spiral staircases modify light: Tailored optical material from DNA:

Munich, Germany | Posted on March 14th, 2012

Coupling light and nanostructures may help significantly reduce the size of optical sensors for medical and environmental applications, while at the same time making them more sensitive. However, the size of a light wave stretching out over 400 to 800 nanometers is gigantic in comparison to nanostructures of only a few nanometers. Yet in theory, when tiniest structures work together in very specific ways, even small objects can interact very well with light. Unfortunately it is not possible to produce the requisite three-dimensional structures with nano-scale precision in sufficient quantities and purity using conventional methods.

"With DNA origami, we have now found a methodology that fulfills all of these requirements. It makes it possible to define in advance and with nanometer precision the three-dimensional shape of the object being created," says Professor Friedrich Simmel, who holds the Chair for Biomolecular Systems and Bionanotechnology at the TU Muenchen. Programmed solely using the sequence of basic building blocks, the nano-elements fold themselves into the desired structures." Friedrich Simmel's team successfully built nano spiral staircases 57 nanometers high and 34 nanometers in diameter with 10 nanometer gold particles attached at regular intervals.

On the surface of the gold particles the electrons react with the electromagnetic field of the light. The small clearance between the particles ensures that the gold particles of a DNA strand work in unison, thereby amplifying the interactions many fold. Professor Alexander O. Govorov, theoretical physicist at the Ohio State University in Athens, USA, had predicted that the effect should depend on the spacing, size and composition of the metal particles. Using the DNA origami method, the Munich physicists built up nanostructures in which they varied these parameters.

The results of these experiments confirm the predictions of their colleagues in every regard: Aqueous solutions of right-handed and left-handed nano spiral staircases differ visibly in their interactions with circular polarized light. Spiral staircases with large particles show a significantly stronger optical response than those with small particles. The chemical composition of the particles also had a large effect: When the gold particles were coated with a layer of silver, the optical resonance shifted from the red to the shorter wave blue domain.

By combining theoretical calculations and the possibilities of DNA origami, the researchers are now able to produce nano-optical materials with precisely specified characteristics. Professor Tim Liedl describes the path the research might follow: "We will now investigate whether we can use this method to influence the refraction index of the materials we manufacture. Materials with a negative refractive index could be used to develop novel optical lens systems - so-called super lenses."

This work was funded by the Volkswagen Foundation, the DFG Cluster of Excellence Nanosystems Initiative Munich (NIM) and the National Science Foundation (NSF, USA).

####

For more information, please click here

Contacts:
Dr. Andreas Battenberg

49-892-891-0510

Copyright © Technische Universitaet Muenchen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Discoveries

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Announcements

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Nanobiotechnology

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

Nonviral CRISPR Delivery a Success October 2nd, 2017

Photonics/Optics/Lasers

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Single ‘solitons’ promising for optical technologies October 9th, 2017

A dash of gold improves microlasers: The precious metal provides a 'nano' solution for improving disease detection, defense and cybersecurity applications October 9th, 2017

Research partnerships

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

More 22 of 59,885 Print all In new window Leti to Present Update of CoolCube/3DVLSI Technologies Development at 2017 IEEE S3S: Future Developments and Tape-Out Vehicles to Be Presented during Oct. 17 Workshop October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Single ‘solitons’ promising for optical technologies October 9th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project