Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Are silver nanoparticles harmful?

Abstract:
Silver nanoparticles cause more damage to testicular cells than titanium dioxide nanoparticles, according to a recent study by the Norwegian Institute of Public Health. However, the use of both types may affect testicular cells with possible consequences for fertility.

Are silver nanoparticles harmful?

Oslo, Norway | Posted on March 14th, 2012

Commonly used

Nanotechnology is increasingly used in consumer products, medicines and building products. The potential risks of using engineered nanoparticles need to be monitored so that the industry can develop products that are safe for humans and nature.

Previous research has shown that nanoparticles can cross both the blood-brain barrier and blood-testes barrier in mice and rats, and are taken up by cells. This study aimed to see if silver and titanium dioxide nanoparticles had any effect on human and mice testicular cells.

The researchers found that silver nanoparticles had a toxic effect on cells, suppressing cellular growth and multiplication and causing cell death depending on concentrations and duration of exposure. The effect was weaker for titanium dioxide nanoparticles, although both types did cause cell type-specific DNA damage, with possible implications on reproduction as well as human and environmental health.

"It seems that the type of nanoparticle, and not the size alone, may be the limiting factor" says Nana Asare, primary author of the study published in Toxicology.

Further studies using in vivo models are needed to study the impact of nanoparticles on reproductive health.
About the study

The researchers used cells from a human testicular carcinoma cell line and testicular cells from two strains of mice, one of which is genetically modified to serve as a representative model for human male reproductive toxicity. The cells were exposed to titanium dioxide nanoparticles (21nm) and two different sizes of silver nanoparticles (20 nm and 200nm) over different concentrations and time periods. Both sizes of silver nanoparticles inhibited normal cell function and caused more cell death than the titanium dioxide nanoparticles. In particular, the 200 nm silver particles caused a concentration-dependent increase in DNA damage in the human cells.
Reference

Asare N, Instanes C, Sandberg WJ, Refsnes M, Schwarze P, Kruszewski M, Brunborg G. Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology, 291: 65-72 (2012)

Nano facts

- Nanotechnology is technology on the atomic and molecular scale
- A nanometre (nm) is one billionth of a metre
- A nanoparticle is a particle with one or more external dimensions in the size range 1 nm - 100 nm
- The aspect ratio between a nanoparticle and a football is similar to that between a football and the Earth
- Nanotechnology is working on a scale of 100 nm (which corresponds approximately to the size of a virus) down to the size of atoms, about 0.1 nm
- Nano-scale materials and processes are present in nature, ranging from free molecules in gases and liquids to proteins and organic processes
- Some substances are produced unintentionally, such as welding dust and diesel particulates

####

For more information, please click here

Contacts:
Norwegian Institute of Public Health
PO Box 4404
Nydalen, N-0403 Oslo
Phone: +47 21077000
Fax: +47 22353605

Copyright © Norwegian Institute of Public Health

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells (PubMed):

Related News Press

News and information

Self-assembling biomaterial forms nanostructure templates for human tissue formation April 27th, 2015

International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment April 27th, 2015

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Discoveries

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Two-dimensional semiconductor comes clean April 27th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Announcements

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Safety-Nanoparticles/Risk management

MIPT researchers put safety of magic anti-cancer bullet to test April 6th, 2015

NNI Publishes Workshop Report Assessing the Status of EHS Risk Science: Report examines progress three years after the release of the 2011 NNI EHS Research Strategy March 23rd, 2015

Are current water treatment methods sufficient to remove harmful engineered nanoparticle? March 10th, 2015

More study needed to clarify impact of cellulose nanocrystals on health: Few studies explore toxicity of cellulose nanocrystals March 10th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project