Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Gold nanoantennas detect proteins: New method of monitoring protein molecules using gold nanoparticles

Institute of Physical Chemistry
The new method developed in Mainz makes it possible to observe individual protein molecules under a microscope with the help of a gold nanoparticle (diagram: Gold nanoantenna with protein molecules shown in purple).
Institute of Physical Chemistry

The new method developed in Mainz makes it possible to observe individual protein molecules under a microscope with the help of a gold nanoparticle (diagram: Gold nanoantenna with protein molecules shown in purple).

Abstract:
Scientists at Johannes Gutenberg University Mainz (JGU) in Germany have developed a new method of observing individual proteins. Detailed knowledge of the dynamics of proteins is necessary in order to understand the related biological processes that occur on the molecular level. To date, this information has been obtained by means of labeling proteins with fluorescent substances, but unfortunately this changes the proteins under investigation and thus influences the biological processes that are to be observed. "Our method allows live tracking of individual proteins without having to label them first," explains Professor Dr. Carsten Sönnichsen of the Institute of Physical Chemistry at JGU. "We are now gaining entirely new insights into molecular processes and can see, for example, how things are constantly in motion even on the very smallest scale."

Gold nanoantennas detect proteins: New method of monitoring protein molecules using gold nanoparticles

Mainz, Germany | Posted on March 14th, 2012

The method developed by the group of Mainz chemists led by Carsten Sönnichsen is based on the use of gold nanoparticles. These serve as glistening nanoantennas that, when they detect individual unlabeled proteins, slightly change their frequency or, in other words, their color. These tiny color changes can be observed using the technique developed in Mainz. "This is an enormous leap forward technologically: We have managed to achieve a very high time resolution for the observation of individual molecules," says Sönnichsen. It is thus now possible to precisely observe the dynamics of a protein molecule down to the millisecond.

The opportunity to detect individual protein molecules also opens up completely new horizons. It has thus become practicable to track the fluctuation of protein population densities and observe protein adsorption processes in real time, among other things. "We can see how molecules move, how they dock at particular locations, and how they fold - this has given us a window into the molecular world," explains Dr. Irene Ament, a member of Sönnichsen's group. This new technology may prove to be useful not only in chemistry but also in medicine and biology.

The work is an important element in research into non-equilibrium phenomena at the molecular level and thus provides a solid foundation for the planned Cluster of Excellence Molecularly Controlled Non-Equilibrium (MCNE), which has been selected to enter the final round of the Excellence Initiative by the German federal and state governments to promote top-level research at German universities. Among other sources, the project received financial support in the form of an ERC Starting Grant for the project "Single metal nanoparticles as molecular sensors" (SINGLESENS).

####

For more information, please click here

Contacts:
Professor Dr. Carsten Sönnichsen
Institute of Physical Chemistry
Johannes Gutenberg University
D 55099 Mainz
Tel +49 6131 39-24313
Fax +49 6131 39-26747

Copyright © Johannes Gutenberg Universitaet Mainz

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Nanomedicine

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Sensors

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

NRL improves optical efficiency in nanophotonic devices January 4th, 2018

'Quantum material' has shark-like ability to detect small electrical signals December 20th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Discoveries

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Announcements

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Nanobiotechnology

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project