Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Gold nanoantennas detect proteins: New method of monitoring protein molecules using gold nanoparticles

Institute of Physical Chemistry
The new method developed in Mainz makes it possible to observe individual protein molecules under a microscope with the help of a gold nanoparticle (diagram: Gold nanoantenna with protein molecules shown in purple).
Institute of Physical Chemistry

The new method developed in Mainz makes it possible to observe individual protein molecules under a microscope with the help of a gold nanoparticle (diagram: Gold nanoantenna with protein molecules shown in purple).

Abstract:
Scientists at Johannes Gutenberg University Mainz (JGU) in Germany have developed a new method of observing individual proteins. Detailed knowledge of the dynamics of proteins is necessary in order to understand the related biological processes that occur on the molecular level. To date, this information has been obtained by means of labeling proteins with fluorescent substances, but unfortunately this changes the proteins under investigation and thus influences the biological processes that are to be observed. "Our method allows live tracking of individual proteins without having to label them first," explains Professor Dr. Carsten Sönnichsen of the Institute of Physical Chemistry at JGU. "We are now gaining entirely new insights into molecular processes and can see, for example, how things are constantly in motion even on the very smallest scale."

Gold nanoantennas detect proteins: New method of monitoring protein molecules using gold nanoparticles

Mainz, Germany | Posted on March 14th, 2012

The method developed by the group of Mainz chemists led by Carsten Sönnichsen is based on the use of gold nanoparticles. These serve as glistening nanoantennas that, when they detect individual unlabeled proteins, slightly change their frequency or, in other words, their color. These tiny color changes can be observed using the technique developed in Mainz. "This is an enormous leap forward technologically: We have managed to achieve a very high time resolution for the observation of individual molecules," says Sönnichsen. It is thus now possible to precisely observe the dynamics of a protein molecule down to the millisecond.

The opportunity to detect individual protein molecules also opens up completely new horizons. It has thus become practicable to track the fluctuation of protein population densities and observe protein adsorption processes in real time, among other things. "We can see how molecules move, how they dock at particular locations, and how they fold - this has given us a window into the molecular world," explains Dr. Irene Ament, a member of Sönnichsen's group. This new technology may prove to be useful not only in chemistry but also in medicine and biology.

The work is an important element in research into non-equilibrium phenomena at the molecular level and thus provides a solid foundation for the planned Cluster of Excellence Molecularly Controlled Non-Equilibrium (MCNE), which has been selected to enter the final round of the Excellence Initiative by the German federal and state governments to promote top-level research at German universities. Among other sources, the project received financial support in the form of an ERC Starting Grant for the project "Single metal nanoparticles as molecular sensors" (SINGLESENS).

####

For more information, please click here

Contacts:
Professor Dr. Carsten Sönnichsen
Institute of Physical Chemistry
Johannes Gutenberg University
D 55099 Mainz
Tel +49 6131 39-24313
Fax +49 6131 39-26747

Copyright © Johannes Gutenberg Universitaet Mainz

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

JPK reports on the use of AFM and the CellHesion module to study plant cells at the University of Queensland November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Nanomedicine

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

ASU, IBM move ultrafast, low-cost DNA sequencing technology a step closer to reality November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Sensors

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Cooling with the coldest matter in the world November 24th, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Discoveries

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Blu-ray disc can be used to improve solar cell performance: Data storage pattern transferred to solar cell increases light absorption November 25th, 2014

Announcements

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

JPK reports on the use of AFM and the CellHesion module to study plant cells at the University of Queensland November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Nanobiotechnology

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Tokyo Institute of Technology research: Protein-engineered cages aid studies of cell functions November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Implementation of DNA Chains in Designing Nanospin Pieces November 9th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE