Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Riber and imec extend successful collaboration on next-generation III-V logic CMOS

Abstract:
Riber, a leading supplier of Molecular Beam Epitaxy (MBE) equipment and services to the compound semiconductor industry, today signed an agreement with imec to further collaborate on epitaxy process technologies for next-generation III-V CMOS devices. The agreement follows a successful collaboration in the field of advanced channel materials for high-performance CMOS scaling, germanium and compound semiconductor (III-V) materials.

Riber and imec extend successful collaboration on next-generation III-V logic CMOS

Bezons, France and Leuven, Belgium | Posted on March 13th, 2012

In the quest for miniaturization, technology has come to a point where CMOS scaling beyond the 45nm node cannot be achieved by simply reducing transistor dimensions. Moreover, the need for small form factors coupled with the stringent requirement of low current leakage/low energy performance has become critical, especially in next-generation mobile devices. Within imec's Germanium and III-V devices program, imec and its core partners are exploring the efficacy of high-mobility channel materials for CMOS devices for advanced nodes. Together with Riber, the bottleneck issue of gate stack passivation was tackled, resulting in effective passivation techniques for Ge and GaAs. Riber's 200mm III-V and metal oxide MBE cluster offered the required extremely clean background and absence of any interfering gas phase components, enabling material and interface control on the atomic level. This resulted in the successful development of a passivation scheme for the MOS gate stack module. Amongst others, it was shown that controlling the GaAs surface reconstruction followed by a H2S passivation treatment and in-situ high-k deposition was crucial to create a well-passivated MOS structure with record-low interfacial state density. Moreover, the world's first successful MOS capacitors on a new high-mobility candidate material, GeSn, were made in the 200mm Riber MBE cluster.

In the new project, the suitability of Riber's 300 mm UHV chamber (ISA300), equipped with in-situ tools for surface analysis, and clustered with state-of-the-art 300mm Si CMOS production equipment, will be evaluated for the production of advanced CMOS devices based on high-mobility Ge and IIIV channels. The aim of the project is threefold 1) use Riber's UHV chamber for study and control of surface structures; 2) bring knowledge on gate stack passivation from a 200mm research environment to a 300mm fab compatible platform; 3) demonstrate the technological viability of a 300mm MBE-module, clustered with ‘standard' 300mm Si CMOS production equipment.

Frédérick Goutard, Riber CEO: "Participating in early stage research is intrinsic to Riber's aim to strengthen our leading position in the compound semiconductor industry. Molecular Beam Epitaxy (MBE) is considered to be most efficient technology to leverage compound semiconductors towards high-end applications with a tremendous market potential, such as mobile phones, telecom, automotive, satellite, .... Using our ISA300 chamber in a 300mm cluster configuration will allow for higher performance in terms of devices operating at high frequencies with reduced energy consumption, etc. We are therefore convinced that this project will clearly demonstrate the attractiveness of our technology in the production of next generations CMOS devices."

Hans Lebon VP fab operations and process step R&D at imec: "Through the collaboration with Riber, imec can integrate the power of UHV-systems into state-of-the-art semiconductors production equipment on large diameter wafers. This will allow the application of powerful in-situ surface analysis tools in CVD and ALD equipment which so far was not feasible due to the gas phase environment. Also, MBE-like UHV-techniques for interface control and passivation come in reach which will benefit the development of next generation CMOS technologies."

####

About IMEC
Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China, India and Japan. Its staff of about 1,900 people includes more than 500 industrial residents and guest researchers. In 2010, imec's revenue (P&L) was 285 million euro. Further information on imec can be found at www.imec.be.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shangai) Co. Ltd.) and imec India (Imec India Private Limited).

About Riber:

Riber designs and produces Molecular Beam Epitaxy (MBE) systems as well as evaporation sources and cells for the semiconductor industry. This high-tech equipment is essential for the manufacturing of compound semiconductor materials and new materials that are used in numerous consumer applications, such as new information technologies, OLED flat screens and new generation solar cells.

Riber is listed on Euronext Paris Compartment “C” and is part of the CAC Small, CAC Mid & Small and CAC IT indexes.

ISIN: FR0000075954 Reuters code: RIBE.PA Bloomberg code: RIB: FP

Riber has been innovation certified by OSEO, the dedicated French innovation agency, enabling it to qualify for French innovation mutual funds (FCPI).

For more information, please click here

Contacts:
Riber:
Alpana Kar / Cyril Combe

T: +33 153 65 68 68

Imec:
Hanne Degans
External Communications Officer

T: +32 16 28 17 69
M: +32 486 06 51 75

For Imec:
Barbara Kalkis
Maestro Marketing & PR
T: +1 408 996 9975
M: +1 408 529 4210

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Chip Technology

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Stanford team combines logic, memory to build a 'high-rise' chip: Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller December 15th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Announcements

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Alliances/Partnerships/Distributorships

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

New 'electronic skin' for prosthetics, robotics detects pressure from different directions December 10th, 2014

SEMATECH Reports Significant Progress in EUV Resist Outgas Testing: Technologists from SEMATECH and JSR demonstrate outgas test results that further enable EUV lithography for high-volume manufacturing readiness December 3rd, 2014

Toward a low-cost 'artificial leaf' that produces clean hydrogen fuel December 3rd, 2014

Research partnerships

Unraveling the light of fireflies December 17th, 2014

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

New Technique Could Harvest More of the Sun's Energy December 9th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE