Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > The shape of things to come: NIST probes the promise of nanomanufacturing using DNA origami

NIST researchers made three DNA origami templates designed so that quantum dots would arrange themselves: (a in the corners, b) diagonally (three dots), and (c in a line (four dots). The researchers found that putting the quantum dots closer together caused them to interfere with one another, leading to higher error rates and lower bonding strength.

Credit: Ko/NIST
NIST researchers made three DNA origami templates designed so that quantum dots would arrange themselves: (a in the corners, b) diagonally (three dots), and (c in a line (four dots). The researchers found that putting the quantum dots closer together caused them to interfere with one another, leading to higher error rates and lower bonding strength.

Credit: Ko/NIST

Abstract:
In recent years, scientists have begun to harness DNA's powerful molecular machinery to build artificial structures at the nanoscale using the natural ability of pairs of DNA molecules to assemble into complex structures. Such "DNA origami," first developed at the California Institute of Technology,* could provide a means of assembling complex nanostructures such as semiconductor devices, sensors and drug delivery systems, from the bottom up.

The shape of things to come: NIST probes the promise of nanomanufacturing using DNA origami

Gaithersburg, MD | Posted on March 7th, 2012

While most researchers in the field are working to demonstrate what's possible, scientists at the National Institute of Standards and Technology (NIST) are seeking to determine what's practical.**

According to NIST researcher Alex Liddle, it's a lot like building with LEGOs—some patterns enable the blocks to fit together snugly and stick together strongly and some don't.

"If the technology is actually going to be useful, you have to figure out how well it works," says Liddle. "We have determined what a number of the critical factors are for the specific case of assembling nanostructures using a DNA-origami template and have shown how proper design of the desired nanostructures is essential to achieving good yield, moving, we hope, the technology a step forward."

In DNA origami, researchers lay down a long thread of DNA and attach "staples" comprised of complementary strands that bind to make the DNA fold up into various shapes, including rectangles, squares and triangles. The shapes serve as a template onto which nanoscale objects such as nanoparticles and quantum dots can be attached using strings of linker molecules.

The NIST researchers measured how quickly nanoscale structures can be assembled using this technique, how precise the assembly process is, how closely they can be spaced, and the strength of the bonds between the nanoparticles and the DNA origami template.

What they found is that a simple structure, four quantum dots at the corners of a 70-nanometer by 100-nanometer origami rectangle, takes up to 24 hours to self-assemble with an error rate of about 5 percent.

Other patterns that placed three and four dots in a line through the middle of the origami template were increasingly error prone. Sheathing the dots in biomaterials, a necessity for attaching them to the template, increases their effective diameter. A wider effective diameter (about 20 nanometers) limits how closely the dots can be positioned and also increases their tendency to interfere with one another during self-assembly, leading to higher error rates and lower bonding strength. This trend was especially pronounced for the four-dot patterns.

"Overall, we think that this process is good for building structures for biological applications like sensors and drug delivery, but it might be a bit of a stretch when applied to semiconductor device manufacturing—the distances can't be made small enough and the error rate is just too high," says Liddle.

* See www.nature.com/nature/journal/v440/n7082/full/nature04586.html.
** S.H. Ko, G.M. Gallatin and J.A. Liddle. Nanomanufacturing with DNA origami: factors affecting the kinetics and yield of quantum dot binding. Advanced Functional Materials, 22, 1015-1023 (2012).

####

For more information, please click here

Contacts:
Mark Esser

301-975-8735

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Laboratories

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

Phonons, arise! Small electric voltage alters conductivity in key materials April 22nd, 2015

Govt.-Legislation/Regulation/Funding/Policy

Two-dimensional semiconductor comes clean April 27th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Chip Technology

Two-dimensional semiconductor comes clean April 27th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Nanomedicine

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Sensors

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Discoveries

Two-dimensional semiconductor comes clean April 27th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Cacao Seed Extract Used in Production of Catalytic Nanoparticles April 27th, 2015

Announcements

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project