Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > 2 for 1: Simultaneous size and electrochemical measurement of nanomaterials

Schematic of NIST's "eSANS" (electrochemical Small-Angle Neutron Scattering) cell. A highly porous, sponge-like carbon electrode maximizes surface area for electrochemical reactions while structural details like particle size and configuration are measured using neutron scattering (image at left).

Credit: Prabhu/NIST
Schematic of NIST's "eSANS" (electrochemical Small-Angle Neutron Scattering) cell. A highly porous, sponge-like carbon electrode maximizes surface area for electrochemical reactions while structural details like particle size and configuration are measured using neutron scattering (image at left).

Credit: Prabhu/NIST

Abstract:
Researchers at the National Institute of Standards and Technology (NIST) have done a mash-up of two very different experimental techniques—neutron scattering and electrochemical measurements—to enable them to observe structural changes in nanoparticles as they undergo an important type of chemical reaction. Their recently published technique* allows them to directly match up particle size, shape and agglomeration with the "redox" chemical properties of the particles. The measurements are important both for the design of nanoparticles for particular applications and for toxicology studies.

2 for 1: Simultaneous size and electrochemical measurement of nanomaterials

Gaithersburg, MD | Posted on March 7th, 2012

Nanoparticles present unique engineering challenges—and opportunities—because their extremely small size can give them physical properties quite unlike those they have in bulk quantities. The challenge for materials scientists is to determine just what those changes are and how they relate to particle size and structure.

The NIST team was interested in the oxidation-reduction—redox— properties of zinc oxide nanoparticles, which are used or being considered for a wide variety of applications ranging from sunscreens and antibacterial coatings to semiconductor and photoelectronic devices.

Redox reactions are one of the major divisions of chemical reactions, those that involve a transfer of electrons from one atom or molecule to another. Redox properties determine the path a chemical reaction will take. "They are the drivers of many biological processes," explains NIST materials researcher Vivek Prabhu. "There are many biochemical reactions that are well-defined oxidation-reduction reactions. There are tables of these. But there are no such tables that we know of on how nanoparticles can affect those reactions."

The NIST team knew they could monitor the size, shape and dispersion of nanoparticles in solution using SANS—small-angle neutron scattering. The scattering patterns from a SANS instrument, says Prabhu, give you not only those details but structural information about the solution itself, the size distribution of the particles and whether they clump together, all in "real" time as the experiment progresses.

Redox properties, on the other hand, are measured in electrochemical cells that are essentially half of a battery. Voltage and the amount of current flowing through the primary electrode depend on the reaction redox potential and the concentration of the test material.

The problem, Prabhu explains, is that SANS measures things in bulk, in a volume of space, but, "An electrochemical experiment is a very local experiment—it happens at an interface. What we needed was to maximize the interface." The answer, contributed by his partner, Vytas Reipa, is an exotic material called reticulated glassy carbon. "Like a very stiff household sponge or scouring pad made of pure carbon," Prabhu explains. The porous carbon electrode turned out to be an ideal terminal—lots of surface area to serve as a reaction interface; nearly transparent to neutrons, so it doesn't contribute much background noise; and best of all, it works well in water, enabling the study of nanoparticles in aqueous solutions, critical for biological reactions.

A big advantage of the "eSANS" technique, Prabhu says, is its generality. "You can apply our method to nearly any dispersed material that is of interest to redox chemistry—polymers, redox proteins, nucleic acids—at this nanoscale. Small polymer chains, for example. You can't really see them with electron microscopy, you can with neutrons."

* V.M. Prabhu and V. Reipa. In situ electrochemical small-angle neutron scattering (eSANS) for quantitative structure and redox properties of nanoparticles. J. Phys. Chem. Lett. 2012, 3, 646-650 dx.doi.org/10.1021/jz300124t.

####

For more information, please click here

Contacts:
Michael Baum

301-975-2763

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Third Quarter Results July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Laboratories

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Ultracold molecules hold promise for quantum computing: New approach yields long-lasting configurations that could provide long-sought “qubit” material July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

Discoveries

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Announcements

Rice U. scientists map ways forward for lithium-ion batteries for extreme environments: Paper details developments toward high-temperature batteries July 27th, 2017

Ultracold molecules hold promise for quantum computing: New approach yields long-lasting configurations that could provide long-sought “qubit” material July 27th, 2017

Atomic discovery opens door to greener, faster, smaller electronic circuitry: Scientists find way to correct communication pathways in silicon chips, making them perfect July 27th, 2017

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Tools

Phenom-World Launches Phenom Pro and ProX Generation 5 SEMs at Microscopy & Microanalysis Conference USA: The excellent performance in a wide range of applications offers a serious alternative to floor model SEMs July 26th, 2017

The School of Materials at the University of Manchester utilise Deben’s mechanical stages to characterise structure and behaviour at the micro- and nano- scale July 25th, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project