Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > 2 for 1: Simultaneous size and electrochemical measurement of nanomaterials

Schematic of NIST's "eSANS" (electrochemical Small-Angle Neutron Scattering) cell. A highly porous, sponge-like carbon electrode maximizes surface area for electrochemical reactions while structural details like particle size and configuration are measured using neutron scattering (image at left).

Credit: Prabhu/NIST
Schematic of NIST's "eSANS" (electrochemical Small-Angle Neutron Scattering) cell. A highly porous, sponge-like carbon electrode maximizes surface area for electrochemical reactions while structural details like particle size and configuration are measured using neutron scattering (image at left).

Credit: Prabhu/NIST

Abstract:
Researchers at the National Institute of Standards and Technology (NIST) have done a mash-up of two very different experimental techniques—neutron scattering and electrochemical measurements—to enable them to observe structural changes in nanoparticles as they undergo an important type of chemical reaction. Their recently published technique* allows them to directly match up particle size, shape and agglomeration with the "redox" chemical properties of the particles. The measurements are important both for the design of nanoparticles for particular applications and for toxicology studies.

2 for 1: Simultaneous size and electrochemical measurement of nanomaterials

Gaithersburg, MD | Posted on March 7th, 2012

Nanoparticles present unique engineering challenges—and opportunities—because their extremely small size can give them physical properties quite unlike those they have in bulk quantities. The challenge for materials scientists is to determine just what those changes are and how they relate to particle size and structure.

The NIST team was interested in the oxidation-reduction—redox— properties of zinc oxide nanoparticles, which are used or being considered for a wide variety of applications ranging from sunscreens and antibacterial coatings to semiconductor and photoelectronic devices.

Redox reactions are one of the major divisions of chemical reactions, those that involve a transfer of electrons from one atom or molecule to another. Redox properties determine the path a chemical reaction will take. "They are the drivers of many biological processes," explains NIST materials researcher Vivek Prabhu. "There are many biochemical reactions that are well-defined oxidation-reduction reactions. There are tables of these. But there are no such tables that we know of on how nanoparticles can affect those reactions."

The NIST team knew they could monitor the size, shape and dispersion of nanoparticles in solution using SANS—small-angle neutron scattering. The scattering patterns from a SANS instrument, says Prabhu, give you not only those details but structural information about the solution itself, the size distribution of the particles and whether they clump together, all in "real" time as the experiment progresses.

Redox properties, on the other hand, are measured in electrochemical cells that are essentially half of a battery. Voltage and the amount of current flowing through the primary electrode depend on the reaction redox potential and the concentration of the test material.

The problem, Prabhu explains, is that SANS measures things in bulk, in a volume of space, but, "An electrochemical experiment is a very local experiment—it happens at an interface. What we needed was to maximize the interface." The answer, contributed by his partner, Vytas Reipa, is an exotic material called reticulated glassy carbon. "Like a very stiff household sponge or scouring pad made of pure carbon," Prabhu explains. The porous carbon electrode turned out to be an ideal terminal—lots of surface area to serve as a reaction interface; nearly transparent to neutrons, so it doesn't contribute much background noise; and best of all, it works well in water, enabling the study of nanoparticles in aqueous solutions, critical for biological reactions.

A big advantage of the "eSANS" technique, Prabhu says, is its generality. "You can apply our method to nearly any dispersed material that is of interest to redox chemistry—polymers, redox proteins, nucleic acids—at this nanoscale. Small polymer chains, for example. You can't really see them with electron microscopy, you can with neutrons."

* V.M. Prabhu and V. Reipa. In situ electrochemical small-angle neutron scattering (eSANS) for quantitative structure and redox properties of nanoparticles. J. Phys. Chem. Lett. 2012, 3, 646-650 dx.doi.org/10.1021/jz300124t.

####

For more information, please click here

Contacts:
Michael Baum

301-975-2763

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Laboratories

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Berkeley Lab Licenses Boron Nitride Nanotube Technology: New material has unique mechanical and electronic properties September 13th, 2014

Advanced Light Source Sets Microscopy Record| Berkeley Lab Researchers Achieve Highest Resolution Ever with X-ray Microscopy September 11th, 2014

Govt.-Legislation/Regulation/Funding/Policy

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Discoveries

Iranian Scientists Separate Zinc Ion at Low Concentrations September 20th, 2014

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

Announcements

Iranian Scientists Separate Zinc Ion at Low Concentrations September 20th, 2014

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Tools

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

New NPZ100-403 Piezo Stage from nPoint Inc. September 17th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE