Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Applied Materials and A*STARís Institute of Microelectronics to Drive Advanced 3D Chip Packaging with World-Class R&D Lab in Singapore

Abstract:
∑ 3D chip packaging expected to be a major inflection point for the semiconductor industry, allowing smaller packages, lower power consumption and higher data bandwidth

∑ Joint R&D Centre is first dedicated facility of its kind focused on developing next-generation packaging technologies to feed the explosive growth of mobile devices

Applied Materials and A*STARís Institute of Microelectronics to Drive Advanced 3D Chip Packaging with World-Class R&D Lab in Singapore

Singapore | Posted on March 7th, 2012

Applied Materials, Inc., the global leader in providing manufacturing solutions for the semiconductor, flat panel display and solar photovoltaic industries, and the Institute of Microelectronics (IME), a world-renowned research institute under the Agency for Science, Technology and Research (A*STAR), officially opened the Centre of Excellence in Advanced Packaging at Singapore's Science Park II today. Singapore's Minister for Trade and Industry, Mr. Lim Hng Kiang, presided at today's opening ceremony.

The Centre of Excellence in Advanced Packaging has been built with a combined investment of over USD$100 million from Applied Materials and IME. The world-class facility features a 14,000 square foot Class-10 cleanroom and is equipped with a fully-integrated line of 300 millimetre manufacturing systems to support the research and development of 3D chip packaging, a critical growth area for the semiconductor industry.

The Centre will be the most advanced lab of its kind dedicated to wafer level packaging and will combine Applied Materials' leading-edge equipment and process technology with IME's leading research capability in 3D chip packaging. The Centre positions Singapore as a global leader in semiconductor R&D and is expected to help accelerate the development and adoption of 3D packaging technology globally.

Traditionally, chips are connected to packages using wires attached to only their edges. This approach limits the possible number of connections from the chip and the long wire connections result in signal speed delays and power inefficiencies. With 3D chip packaging, multiple chips can be stacked on top of each other and connected with wiring that runs vertically through the stack - called through-silicon vias (TSVs). When used to stack memory chips on logic chips, this technology is expected to reduce package size by 35%, decrease power consumption by 50%, and increase data bandwidth by a factor of eight or more times.

Conceived to support research collaboration between Applied Materials and IME, the Centre will also allow both parties to pursue independent research initiatives including process engineering, integration and hardware development. For Applied Materials, this is a significant addition of new capabilities in Singapore. The Centre also serves as a demonstration of how A*STAR is able to develop and nurture a local ecosystem for advanced R&D through partnerships with leading corporations. Research activities are already underway with a team of over 50 personnel.

"Today, we are not only opening the most advanced wafer level packaging lab of its kind in the world, but we are also opening a new product development capability for Applied Materials in Asia," said Mike Splinter, Chairman and Chief Executive Officer of Applied Materials. "This Centre will strengthen our ability to advance new technologies and allow us to work more closely with our customers in Asia."

On the collaboration with Applied Materials, Mr. Lim Chuan Poh, Chairman of A*STAR, said, "The combined efforts of Applied Materials and A*STAR's Institute of Microelectronics are a continuing testimony to A*STAR's spectrum of excellent and industry-relevant scientific capabilities. It reaffirms our strategy of leveraging a suite of capabilities to form meaningful and impactful public-private research alliances which catalyse the growth of private sector R&D activities in Singapore. This will create many high-value jobs locally and help to further anchor Singapore's semiconductor manufacturing base."

Professor Dim-Lee Kwong, Executive Director of IME, added, "The Centre of Excellence is a prime example of a strategic relationship fostered between two leading players in the global semiconductor value chain and will spur the development of innovative wafer-level packaging technologies to be implemented globally. This collaboration will enable the semiconductor industry to accelerate the adoption of 3D chip packaging."

####

Contacts:
Joyce Peh
Account Executive
ICON International Communications
28 Maxwell Road #04-06
Red Dot Traffic Building
Singapore 069120
E
M +65 9177 8815
T +65 6220 2623
F +65 6220 0610
www.iconinternational.com.sg

Copyright © Agency for Science, Technology and Research (A*STAR)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Chip Technology

Instant-start computers possible with new breakthrough December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Stanford team combines logic, memory to build a 'high-rise' chip: Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller December 15th, 2014

Announcements

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Research partnerships

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Unraveling the light of fireflies December 17th, 2014

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE