Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Influencing stem cell fate: New screening method helps scientists identify key information rapidly

Abstract:
Northwestern University scientists have developed a powerful analytical method that they have used to direct stem cell differentiation. Out of millions of possibilities, they rapidly identified the chemical and physical structures that can cue stem cells to become osteocytes, cells found in mature bone.

Influencing stem cell fate: New screening method helps scientists identify key information rapidly

Chicago, IL | Posted on March 6th, 2012

Researchers can use the method, called nanocombinatorics, to build enormous libraries of physical structures varying in size from a few nanometers to many micrometers for addressing problems within and outside biology.

Those in the fields of chemistry, materials engineering and nanotechnology could use this invaluable tool to assess which chemical and physical structures -- including size, shape and composition -- work best for a desired process or function.

Nanocombinatorics holds promise for screening catalysts for energy conversion, understanding properties conferred by nanostructures, identifying active molecules for drug discovery or even optimizing materials for tissue regeneration, among other applications.

Details of the method and proof of concept is published in the Proceedings of the National Academy of Sciences.

"With further development, researchers might be able to use this approach to prepare cells of any lineage on command," said Chad A. Mirkin, who led the work. "Insight into such a process is important for understanding cancer development and for developing novel cancer treatment methodologies."

Mirkin is the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and professor of medicine, chemical and biological engineering, biomedical engineering and materials science and engineering. He also is the director of Northwestern's International Institute for Nanotechnology (IIN).

The new analytical method utilizes a technique invented at Northwestern called polymer pen lithography, where basically a rubber stamp having as many as 11 million sharp pyramids is mounted on a transparent glass backing and precisely controlled by an atomic force microscope to generate desired patterns on a surface. Each pyramid -- a polymeric pen -- is coated with molecules for a particular purpose.

In this work, the researchers used molecules that bind proteins found in the natural cell environment, such as fibronectin, which could then be attached onto a substrate in various patterns. (Fibronectin is a protein that mediates cell adhesion.) The team rapidly prepared millions of textured features over a large area, which they call a library. The library consisted of approximately 10,000 fibronectin patterns having as many as 25 million features ranging in size from a couple hundred nanometers to several micrometers.

To make these surfaces, they intentionally tilt the stamp and its array of pens as the stamp is brought down onto the substrate, each pen delivering a spot of molecules that could then bind fibronectin. The tilt results in different amounts of pressure on the polymeric pens, which dictates the feature size of each spot. Because the pressure varies across a broad range, so does the feature size.

The researchers then introduced mesenchymal stem cells, or MSCs, to the library of millions of fibronectin features. (MSCs are multipotent stem cells that can differentiate into a variety of other cell types.)

"We let the cells sample the library and watched what happened," Mirkin said.

He and his team found areas with stem cell differentiation and areas with none. Nanoscale features, particularly protein spots that were 300 nanometers in diameter, were more likely to lead to bone-like cells than larger micron-scale features.

The researchers next built a library made up of only 300-nanometer dots and introduced stem cells. Almost all of the cells became bone-like.

"We want to make stem cells go down a predetermined path -- to make bone cells instead of nerve or muscle cells," Mirkin said. "Starting with millions of possibilities, we quickly zeroed in on the pattern of protein features that best directed the cells to become osteocytes."

This stem cell differentiation was accomplished without the use of additional chemical cues (beyond the proteins in the patterns). The transition from stem cell to osteocyte was dictated solely by the physical cues of the patterned structures. And the researchers demonstrated better control over stem cell differentiation than chemical reagent methods currently used.

"It doesn't stop with stem cells," Mirkin said. "Scientists can use nanocombinatorics to build libraries of structures that vary in shape, size and distance between particles and determine the best structures for controlling important events, like speeding up a catalytic reaction."

The title of the paper is "Scanning Probe-Enabled Nanocombinatorics Define the Relationship Between Fibronectin Feature Size and Stem Cell Fate." In addition to Mirkin, other authors of the paper are Louise R. Giam (first author), Matthew D. Massich, Liangliang Hao, Lu Shin Wong and Christopher C. Mader.

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Hiden Release New Gas Analysis Catalogue August 21st, 2014

Wyatt Technology’s 24th International Light Scattering Colloquium to Highlight Developments in Applications and Characterization of Nanoparticles August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Chemistry

Production of Toxic Ion Nanosorbents with High Sorption Capacity in Iran August 17th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

Could hemp nanosheets topple graphene for making the ideal supercapacitor? August 12th, 2014

Iranians Find Novel Method for Processing Highly Pure Ceramic Nanoparticles August 12th, 2014

Nanomedicine

Ultra-short pulse lasers & Positioning August 21st, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Graphene rubber bands could stretch limits of current healthcare, new research finds August 19th, 2014

Discoveries

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Announcements

Wyatt Technology’s 24th International Light Scattering Colloquium to Highlight Developments in Applications and Characterization of Nanoparticles August 21st, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Nanobiotechnology

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Сalculations with Nanoscale Smart Particles August 19th, 2014

Interaction between Drug, DNA for Designing Anticancer Drugs Studied in Iran August 17th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

Printing/Lithography/Inkjet/Inks

SouthWest NanoTechnologies Appoints Matteson-Ridolfi for U.S. Distribution of its SMW™ Specialty Multiwall Carbon Nanotubes August 13th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

Iranian Scientists Produce Cobalt–Alumina Ceramic Nano Inks August 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE