Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Invited award symposium presentation on molecular orientation of electrospun fibers using nanoscale IR spectroscopy at Pittcon 2012

Abstract:
Anasys Instruments, the company that pioneered nanoscale thermal analysis and nanoscale IR spectroscopy using an AFM, is pleased to announce that Dr. Bruce Chase is presenting an invited talk entitled "Structure and Orientation in Electrospun Nanofibers" at the 2012 Pittsburgh Conference, as part of the Organized Contributed Session on Analytical Applications of Broadly Tunable Lasers. The presentation will include spatially resolved measurements of molecular orientation obtained by a technique combining atomic force microscopy and infrared spectroscopy (AFM-IR). The measurements were performed in collaboration with Anasys Instruments using an AFM-IR instrument incorporating arbitrary polarization angle control. "By measuring the infrared absorption of a sample locally as a function of polarization angle, we can identify regions of a sample that have a high degree of molecular orientation," says Anasys CTO Craig Prater. "Controlling molecular orientation is a critically important technology for improving the performance of polymers—with the polarization control capability we provide a new ability to observe molecular orientation with high spatial resolution."

Invited award symposium presentation on molecular orientation of electrospun fibers using nanoscale IR spectroscopy at Pittcon 2012

Santa Barbara, CA | Posted on March 6th, 2012

Dr. Chase's presentation will contain important insights on molecular orientation of electrospun PVDF fibers. This is an important research area because of the vast applications of electrospun fibers ranging from textiles and advanced composites to biomedical applications such as tissue engineering scaffolds and artificial blood vessels. Speaking about the results, Professor Chase said that "Our ability to produce enhanced material properties in electrospun fibers is critically dependent on understanding molecular level structure at the nanoscale. The NanoIR results have given us a first look at chain orientation of individual fibers."

Dr. Chase is a Research Professor in the Department of Materials Science and Engineering at the University of Delaware and the Chief Technical Officer of Pair Technologies, LLC. He retired from DuPont in 2009 as a DuPont Fellow and Chair of the DuPont Fellows Forum. His co-authors on this paper are Professor John Rabolt, Karl W. and Renate Boer Professor of Materials Science at the University of Delaware and Xiaoqian Ma, whose doctoral dissertation this research falls under and Dr. Qichi Hu from Anasys who performed the measurements.

####

About Anasys Instruments
Anasys Instruments Corporation was founded in 2005 by an experienced team of AFM industry pioneers and scientists with the goal of creating innovative analytic tools that enable a better understanding of structure, property, and function at the nanoscale. The Santa Barbara, California-based company has already developed and introduced three award-winning technologies: nanoscale thermal analysis (nano-TA), transition temperature microscopy (TTM), and nanoscale infrared spectroscopy (nanoIR).

For more information, please click here

Contacts:
Anasys contact:
Roshan Shetty
Anasys Instruments Corporation
121 Gray Avenue, Suite 100
Santa Barbara
CA 93101
USA
Tel: +1 (805) 730-3310


Media contact:

Jezz Leckenby
Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA
UK
Tel: +44 (0) 1799 521881
Mob: +44 (0) 7843 012997
http://www.talking-science.com/

Copyright © Anasys Instruments

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Announcements

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Tools

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Spider silk: Mother Nature's bio-superlens August 22nd, 2016

Tracing barnacle's footprint August 19th, 2016

XEI Scientific celebrates its Silver Anniversary August 16th, 2016

Events/Classes

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Impressive List of Doctors, Scientists Coming to Vail for Scientific Summit: The Second Vail Scientific Summit Convenes the Greatest Minds in Regenerative Medicine and Science August 17th, 2016

Harris & Harris Group to Host a Shareholder Update Call, Including a Presentation by One of Its Precision Health and Medicine Portfolio Companies, Muses Labs, Inc., on August 23, 2016 August 16th, 2016

Pokhara, the second largest city of Nepal, to host its first ever International Meeting on Material Sciences and Engineering August 15th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic