Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > CEA-Leti and III-V lab demonstrate a fully integrated silicon photonics transmitter It incorporates a hybrid tunable laser on silicon

Abstract:
CEA-Leti and III-V lab, a joint lab of Alcatel-Lucent Bell Labs France, Thales Research and Technology and CEA Leti, today announced that they have demonstrated an integrated tunable transmitter on silicon. For the first time, a tunable laser source has been integrated on silicon, which represents a key milestone towards fully integrated transceivers.

CEA-Leti and III-V lab demonstrate a fully integrated silicon photonics transmitter It incorporates a hybrid tunable laser on silicon

Grenoble, France | Posted on March 5th, 2012

The transmitter incorporates a hybrid III-V/Si laser-fabricated by direct bonding, which exhibits 9 nm wavelength tunability and a silicon Mach-Zehnder modulator with high extinction ratio (up to 10 dB), leading to an excellent bit-error-rate performance at 10 Gb/s. The results were obtained in the frame of the European funded project HELIOS (www.helios-project.eu), with the contribution of Ghent University-IMEC for the design of the laser and University of Surrey for the design of the modulator.

CEA-Leti and III-V lab also demonstrated single wavelength tunable lasers, with 21mA threshold at 20°C, 45 nm tuning range and side mode suppression ratio larger than 40 dB over the tuning range.

These results will be overviewed during the Optical Fiber Communication conference 2012 in Los Angeles (USA) on March 4-8, 2012.

Silicon photonics is a very powerful technology, and CEA-Leti and III-V lab have now made a significant breakthrough in its development by integrating on the same chip complex devices such as a fully integrated transmitter working above 10Gb/s or a tunable single wavelength laser.

Silicon photonics has the promise of bringing the large scale manufacturing of CMOS to photonic devices that are still expensive due to a lack of ubiquitous technology. One big obstacle to silicon photonics is the lack of optical sources on silicon, the base material on CMOS.

"We can overcome this problem by bonding III-V material, necessary for active light sources, onto a silicon wafer and then co-processing the two, thus accomplishing two things at once," explained Martin Zirngibl, Bell Labs Physical Technologies Research leader. "Traditional CMOS processing is still used in the process, while at the same time we now can integrate active light sources directly onto silicon."

Based on the heterogeneous integration process developed by the CEA-Leti and III-V lab, III-V materials such as InP can be integrated onto silicon wafers. The fabrication process starts on 200mm Silicon on Insulator (SOI) wafers where the silicon waveguides and modulators are fabricated on CEA-Leti 200mm CMOS pilot line.

"We are proud to jointly present with III-V lab the results of the integrated silicon photonics transmitter and the tunable laser," said Laurent Fulbert, Photonics Program Manager at the CEA-Leti France. "The ability to integrate a tunable laser, a modulator and passive waveguides on silicon paves the way of further developments on integrated transceivers that can address several application needs in metropolitan and access networks, servers, data centers, high performance computers as well as optical interconnects at rack-level and board-level. We are pleased to bring our contribution to these state-of-the-art results which can truly revolutionize optical communications".

The CEA-Leti will hold the booth #718 of the Optical Fiber Conference (OFC 2012) in Los Angeles on March 4-8, 2012. Please feel free to show up at the CEA-Leti booth if you will be attending.

####

About CEA-Leti
Leti is an institute of CEA, a French research-and-technology organization with activities in energy, IT, healthcare, defence and security. Leti is focused on creating value and innovation through technology transfer to its industrial partners. It specializes in nanotechnologies and their applications, from wireless devices and systems, to biology, healthcare and photonics. NEMS and MEMS are at the core of its activities. An anchor of the MINATEC campus, CEA-Leti operates 8,000-m² of state-of-the-art clean room space on 200mm and 300mm wafer platforms. It employs 1,400 scientists and engineers and hosts more than 190 Ph.D. students and 200 assignees from partner companies. CEA-Leti owns more than 1,700 patent families. For more information, visit www.leti.fr.

About III-VLab

III-V Lab is an industrial Research Laboratory created in 2004 by Alcatel-Lucent and Thales, Alcatel-Lucent Bell Labs is one of the leaders in communication technologies (mobile, fixed, IP and Optics technologies), applications and services, while Thales is a major electronic systems company acting in areas such as defence, aerospace, airlines security and safety, information technology, and transportation. In 2010, III-V Lab was extended with the entrance of the “Laboratoire d’Electronique et de Technologie de l’Information” (LETI) from CEA in the capital, as well as 20 people from the LETI, opening the way to hybrid III-V on Si integration. CEA is one of the largest public research organisations in France, acting mainly in the fields of low carbon energies, information technologies, health technologies, large research infrastructures and global security.Under the guidance of its members, III-V Lab conducts R&D activities in the field of micro/nano-electronics and photonics semiconductor components for different application: telecoms, defence, security, safety, space etc.

Located on 2 sites near Paris (Marcoussis and Palaiseau), its facilities include 4,000 m2 of clean rooms. Its staff is composed of around 100 permanent Researchers, plus around 25 PhD Students.

About Bell Labs:

Alcatel Lucent today is one of the largest innovation powerhouses in the communications industry, boasting more than 26,000 research and development experts worldwide, representing a combined R&D investment of Euro 2.5 billion, and a portfolio of over 27,900 active patents. At the core of this innovation is Alcatel-Lucent's research, which includes the world-renowned Bell Labs, providing Alcatel-Lucent with an innovation engine of 850 researchers. at the forefront of research into areas such as multimedia, new service delivery architectures and platforms, wireless and wireline broadband access, packet and optical networking and transport,and fundamental research. Belll Labs is well-known for inventions that shaped telecommunications networks of the 20th Century – the transistor, laser, DSL, UNIX, DWDM and MIMO, and continues to focus its research on innovations that will define communications in the 21st Century. In particular, Bell Labs invents technologies that enable us to gain market advantage, help our customers to meet their business objectives and deliver benefit to society. Bell Labs scientists conduct research at eight Bell Labs facilities around the globe: Belgium, China, France, Germany, India, Ireland, South Korea and the U.S.

For more information, please click here

Contacts:
CEA-Leti
Thierry Bosc
+33 4 38 78 31 95


Laurent Fulbert
Photonics Programs Manager
+33 4 38 78 38 45


III-VLab
Denis Mazerolle
01 30 77 68 93


Weber Shandwick France
Robert Ba/Floriane Geroudet
+33 1 47 59 38 75/56 46

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Kalam: versatility personified August 1st, 2015

Chip Technology

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Announcements

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Photonics/Optics/Lasers

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

IEEE Photonics Society Applauds Rochester on Integrated Photonics Institute Win July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Alliances/Trade associations/Partnerships/Distributorships

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

The National Space Society Pays Tribute to Dr. Kalam -- One Of Our Leading Lights Has Joined The Stars August 1st, 2015

Liquipel Debuts Eyesight-Saving ION-Glass Blue Light Protection for iPhones and Androids at RadioShack Stores Nationwide: Liquipel's Unique Protective Screen, Available at RadioShack, Cuts Harmful Blue Light Implicated in Macular Degeneration by 10x July 28th, 2015

Dais Analytic's Business Affiliate in China Announces Ten-Year Strategic Energy Efficiency Business Arrangement With COFCO: Dais Beijing to Perform Feasibility Study on Over 80 Buildings to Improve Efficiencies as Part of Overall Hotel Energy-Savings Project July 23rd, 2015

Research partnerships

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Stretching the limits on conducting wires July 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project