Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Graphene-based optical modulators poised to break speed limits in digital communications: UC Berkeley researchers to present on graphene-based optical modulators at OFC/NFOEC 2012

Abstract:
In yet another astounding application of the "wonder material" graphene, scientists at the University of California, Berkeley discovered that it makes an excellent active media for optical modulators. Graphene-based modulators are expected to significantly enhance ultrafast optical communication and computing. team will report on their findings at the Optical Fiber Communication Conference and Exhibition/National Fiber Optic Engineers Conference (OFC/NFOEC) taking place next week in Los Angeles.

Graphene-based optical modulators poised to break speed limits in digital communications: UC Berkeley researchers to present on graphene-based optical modulators at OFC/NFOEC 2012

Washington, DC | Posted on March 1st, 2012

Modulators play a vital role in communications due to their switching ability, because this is what controls the speed that data packets can travel through networks. As the speed of data pulses sent out increases, it means that greater volumes of information can be transmitted.

"We demonstrated a graphene-based optical modulator with a broad optical bandwidth (1.35-1.6 µm), a small device footprint (25 µm2), and high operational speed (1.2 GHz at 3dB) under ambient conditions—all of which are essential for optical interconnects for future integrated optoelectronic systems," says Ming Liu, a post-doctoral researcher working at UC Berkeley's NSF Nanoscale Science and Engineering Center. "The modulation efficiency of a single layer of a hexagonal carbon atom is already comparable to, if not better than, traditional semiconductor materials, which are orders of magnitude larger in active volume."

Looking into future applications, graphene-based modulators could be very compact and potentially perform at speeds up to 10 times faster than today's technology allows. They may someday enable consumers to stream full-length, high-definition, 3-D movies onto their smartphones within mere seconds.

Liu's talk, "Graphene-based optical modulators," takes place Tuesday, March 6 at 3:30 p.m. in the Los Angeles Convention Center.

EDITOR'S NOTE: Credentialed press and analysts can obtain a complimentary press badge to attend OFC/NFOEC. The press/analyst registration form is available on the OFC/NFOEC website (www.ofcnfoec.org).

####

About Optical Society of America
For more than 35 years, the Optical Fiber Communication Conference and Exposition/ National Fiber Optic Engineers Conference (OFC/NFOEC) has been the premier destination for converging breakthrough research and innovation in telecommunications, optical networking and, recently, datacom and computing. Uniting service providers, systems companies, enterprise customers, IT businesses and component manufacturers, along with researchers, engineers and development teams, OFC/NFOEC combines dynamic business programming, an exposition of more than 500 companies and cutting-edge peer-reviewed research into one event that showcases the trends and pulse of the entire optical communications industry.

OFC/NFOEC is managed by the Optical Society (OSA) and co-sponsored by OSA, the Institute of Electrical and Electronics Engineers/Communications Society (IEEE/ComSoc) and the IEEE Photonics Society. Acting as a non-financial technical co-sponsor is Telcordia Technologies, Inc. Visit www.ofcnfoec.org.

For more information, please click here

Contacts:
Angela Stark

202-416-1443

Copyright © Optical Society of America

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

Graphene/ Graphite

Graphene photodetectors: Thinking outside the 2-D box July 21st, 2016

A glimpse inside the atom: Using electron microscopes, it is possible to image individual atoms July 20th, 2016

Graphene-infused packaging is a million times better at blocking moisture July 15th, 2016

'Rivet graphene' proves its mettle: Rice University shows toughened material is easier to handle, useful for electronics July 14th, 2016

Optical computing/Photonic computing

The birth of quantum holography: Making holograms of single light particles! July 21st, 2016

Researchers develop faster, precise silica coating process for quantum dot nanorods July 12th, 2016

A little impurity makes nanolasers shine: ANU media release July 6th, 2016

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Discoveries

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

Announcements

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

Tools

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

The birth of quantum holography: Making holograms of single light particles! July 21st, 2016

A mini-antenna for the data processing of tomorrow: Nature Nanotechnology: Short-wavelength spin waves generated directly for the first time July 20th, 2016

Photonics/Optics/Lasers

RMIT researchers make leap in measuring quantum states July 21st, 2016

The birth of quantum holography: Making holograms of single light particles! July 21st, 2016

Graphene photodetectors: Thinking outside the 2-D box July 21st, 2016

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic