Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Graphene-based optical modulators poised to break speed limits in digital communications: UC Berkeley researchers to present on graphene-based optical modulators at OFC/NFOEC 2012

Abstract:
In yet another astounding application of the "wonder material" graphene, scientists at the University of California, Berkeley discovered that it makes an excellent active media for optical modulators. Graphene-based modulators are expected to significantly enhance ultrafast optical communication and computing. team will report on their findings at the Optical Fiber Communication Conference and Exhibition/National Fiber Optic Engineers Conference (OFC/NFOEC) taking place next week in Los Angeles.

Graphene-based optical modulators poised to break speed limits in digital communications: UC Berkeley researchers to present on graphene-based optical modulators at OFC/NFOEC 2012

Washington, DC | Posted on March 1st, 2012

Modulators play a vital role in communications due to their switching ability, because this is what controls the speed that data packets can travel through networks. As the speed of data pulses sent out increases, it means that greater volumes of information can be transmitted.

"We demonstrated a graphene-based optical modulator with a broad optical bandwidth (1.35-1.6 µm), a small device footprint (25 µm2), and high operational speed (1.2 GHz at 3dB) under ambient conditions—all of which are essential for optical interconnects for future integrated optoelectronic systems," says Ming Liu, a post-doctoral researcher working at UC Berkeley's NSF Nanoscale Science and Engineering Center. "The modulation efficiency of a single layer of a hexagonal carbon atom is already comparable to, if not better than, traditional semiconductor materials, which are orders of magnitude larger in active volume."

Looking into future applications, graphene-based modulators could be very compact and potentially perform at speeds up to 10 times faster than today's technology allows. They may someday enable consumers to stream full-length, high-definition, 3-D movies onto their smartphones within mere seconds.

Liu's talk, "Graphene-based optical modulators," takes place Tuesday, March 6 at 3:30 p.m. in the Los Angeles Convention Center.

EDITOR'S NOTE: Credentialed press and analysts can obtain a complimentary press badge to attend OFC/NFOEC. The press/analyst registration form is available on the OFC/NFOEC website (www.ofcnfoec.org).

####

About Optical Society of America
For more than 35 years, the Optical Fiber Communication Conference and Exposition/ National Fiber Optic Engineers Conference (OFC/NFOEC) has been the premier destination for converging breakthrough research and innovation in telecommunications, optical networking and, recently, datacom and computing. Uniting service providers, systems companies, enterprise customers, IT businesses and component manufacturers, along with researchers, engineers and development teams, OFC/NFOEC combines dynamic business programming, an exposition of more than 500 companies and cutting-edge peer-reviewed research into one event that showcases the trends and pulse of the entire optical communications industry.

OFC/NFOEC is managed by the Optical Society (OSA) and co-sponsored by OSA, the Institute of Electrical and Electronics Engineers/Communications Society (IEEE/ComSoc) and the IEEE Photonics Society. Acting as a non-financial technical co-sponsor is Telcordia Technologies, Inc. Visit www.ofcnfoec.org.

For more information, please click here

Contacts:
Angela Stark

202-416-1443

Copyright © Optical Society of America

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Graphene

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Record high sensitive Graphene Hall sensors May 21st, 2015

Simulations predict flat liquid May 21st, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

Optical computing/ Photonic computing

Computing at the speed of light: Utah engineers take big step toward much faster computers May 18th, 2015

Electrons corralled using new quantum tool: 'Whispering gallery' effect confines electrons, could provide basis for new electron-optics devices May 7th, 2015

Putting a new spin on plasmonics: Researchers at Aalto University have discovered a novel way of combining plasmonic and magneto-optical effects May 7th, 2015

Rice scientists use light to probe acoustic tuning in gold nanodisks: Rice University experts demonstrate new method for optomechanical tuning May 7th, 2015

Discoveries

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Announcements

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Tools

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

DELMIC announces a workshop hosted by Phenom World on Integrated CLEM to be held on Wednesday June 24th at the Francis Crick Institute (Lincoln Inn Fields Laboratory). May 19th, 2015

Photonics/Optics/Lasers

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Computing at the speed of light: Utah engineers take big step toward much faster computers May 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project