Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Graphene-based optical modulators poised to break speed limits in digital communications: UC Berkeley researchers to present on graphene-based optical modulators at OFC/NFOEC 2012

Abstract:
In yet another astounding application of the "wonder material" graphene, scientists at the University of California, Berkeley discovered that it makes an excellent active media for optical modulators. Graphene-based modulators are expected to significantly enhance ultrafast optical communication and computing. team will report on their findings at the Optical Fiber Communication Conference and Exhibition/National Fiber Optic Engineers Conference (OFC/NFOEC) taking place next week in Los Angeles.

Graphene-based optical modulators poised to break speed limits in digital communications: UC Berkeley researchers to present on graphene-based optical modulators at OFC/NFOEC 2012

Washington, DC | Posted on March 1st, 2012

Modulators play a vital role in communications due to their switching ability, because this is what controls the speed that data packets can travel through networks. As the speed of data pulses sent out increases, it means that greater volumes of information can be transmitted.

"We demonstrated a graphene-based optical modulator with a broad optical bandwidth (1.35-1.6 µm), a small device footprint (25 µm2), and high operational speed (1.2 GHz at 3dB) under ambient conditions—all of which are essential for optical interconnects for future integrated optoelectronic systems," says Ming Liu, a post-doctoral researcher working at UC Berkeley's NSF Nanoscale Science and Engineering Center. "The modulation efficiency of a single layer of a hexagonal carbon atom is already comparable to, if not better than, traditional semiconductor materials, which are orders of magnitude larger in active volume."

Looking into future applications, graphene-based modulators could be very compact and potentially perform at speeds up to 10 times faster than today's technology allows. They may someday enable consumers to stream full-length, high-definition, 3-D movies onto their smartphones within mere seconds.

Liu's talk, "Graphene-based optical modulators," takes place Tuesday, March 6 at 3:30 p.m. in the Los Angeles Convention Center.

EDITOR'S NOTE: Credentialed press and analysts can obtain a complimentary press badge to attend OFC/NFOEC. The press/analyst registration form is available on the OFC/NFOEC website (www.ofcnfoec.org).

####

About Optical Society of America
For more than 35 years, the Optical Fiber Communication Conference and Exposition/ National Fiber Optic Engineers Conference (OFC/NFOEC) has been the premier destination for converging breakthrough research and innovation in telecommunications, optical networking and, recently, datacom and computing. Uniting service providers, systems companies, enterprise customers, IT businesses and component manufacturers, along with researchers, engineers and development teams, OFC/NFOEC combines dynamic business programming, an exposition of more than 500 companies and cutting-edge peer-reviewed research into one event that showcases the trends and pulse of the entire optical communications industry.

OFC/NFOEC is managed by the Optical Society (OSA) and co-sponsored by OSA, the Institute of Electrical and Electronics Engineers/Communications Society (IEEE/ComSoc) and the IEEE Photonics Society. Acting as a non-financial technical co-sponsor is Telcordia Technologies, Inc. Visit www.ofcnfoec.org.

For more information, please click here

Contacts:
Angela Stark

202-416-1443

Copyright © Optical Society of America

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Graphene/ Graphite

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Graphene makes rubber more rubbery May 23rd, 2016

Graphene: Progress, not quantum leaps May 23rd, 2016

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Optical computing/Photonic computing

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Photon collisions: Photonic billiards might be the newest game! May 20th, 2016

UW researchers unleash graphene 'tiger' for more efficient optoelectronics May 16th, 2016

How light is detected affects the atom that emits it: An experiment suggests it might be possible to control atoms entangled with the light they emit by manipulating detection May 15th, 2016

Discoveries

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Announcements

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Tools

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

More light on cancer: Scientists created nanoparticles to highlight cancer cells May 21st, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Photonics/Optics/Lasers

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Photon collisions: Photonic billiards might be the newest game! May 20th, 2016

We’ll Leave the Lights On For You: Photonics advances allow us to be seen across the universe, with major implications for the search for extraterrestrial intelligence, says UC Santa Barbara physicist Philip Lubin - See more at: http://www.news.ucsb.edu/2016/016805/we-ll-leave-li May 17th, 2016

UW researchers unleash graphene 'tiger' for more efficient optoelectronics May 16th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic