Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > IBM Research Nanophysics Breakthrough Captures First-Ever Image of Charge Distribution in a Single Molecule

Abstract:
-- Scientists use special kind of atomic force microscopy at low temperatures and in ultrahigh vacuum to image the charge distribution within a single molecule

-- The new technique will further the understanding of nanoscale physics and could help develop future applications such as solar photoconversion, energy storage, or molecular scale computing devices

IBM Research Nanophysics Breakthrough Captures First-Ever Image of Charge Distribution in a Single Molecule

Zurich, Switzerland | Posted on February 27th, 2012

IBM (NYSE: IBM) scientists were able to measure for the first time how charge is distributed within a single molecule. This breakthrough will enable fundamental scientific insights into single-molecule switching and bond formation between atoms and molecules. The ability to image the charge distribution within functional molecular structures holds great promise for future applications such as solar photoconversion, energy storage, or molecular scale computing devices.

As reported recently in the journal Nature Nanotechnology, scientists Fabian Mohn, Leo Gross, Nikolaj Moll and Gerhard Meyer of IBM Research succeeded in imaging the charge distribution within a single molecule by using a special kind of atomic force microscopy called Kelvin probe force microscopy at low temperatures and in ultrahigh vacuum.

"This work demonstrates an important new capability of being able to directly measure how charge arranges itself within an individual molecule," states Michael Crommie, Professor in the Department of Physics at the University of California, Berkeley. "Understanding this kind of charge distribution is critical for understanding how molecules work in different environments. I expect this technique to have an especially important future impact on the many areas where physics, chemistry, and biology intersect."

The new technique provides complementary information about the molecule, showing different properties of interest. This is reminiscent of medical imaging techniques such as X-ray, MRI, or ultrasonography, which yield complementary information about a person's anatomy and health condition.

The discovery could be used to study charge separation and charge transport in so-called charge-transfer complexes. These consist of two or more molecules and hold tremendous promise for applications such as computing, energy storage or photovoltaics. In particular, the technique could contribute to the design of molecular-sized transistors that enable more energy efficient computing devices ranging from sensors to mobile phones to supercomputers.

"This technique provides another channel of information that will further our understanding of nanoscale physics. It will now be possible to investigate at the single-molecule level how charge is redistributed when individual chemical bonds are formed between atoms and molecules on surfaces," explains Fabian Mohn of the Physics of Nanoscale Systems group at IBM Research - Zurich. "This is essential as we seek to build atomic and molecular scale devices."

Gerhard Meyer, a senior IBM scientist who leads the scanning tunneling microscopy (STM) and atomic force microscopy (AFM) research activities at IBM Research - Zurich adds, "The present work marks an important step in our long term effort on controlling and exploring molecular systems at the atomic scale with scanning probe microscopy."

For his outstanding work in the field, Meyer recently received a European Research Council Advanced Grant. These prestigious grants support "the very best researchers working at the frontiers of knowledge" in Europe.*

Taking a closer look

To measure the charge distribution, IBM scientists used an offspring of AFM called Kelvin probe force microscopy (KPFM).

When a scanning probe tip is placed above a conductive sample, an electric field is generated due to the different electrical potentials of the tip and the sample. With KPFM this potential difference can be measured by applying a voltage such that the electric field is compensated. Therefore, KPFM does not measure the electric charge in the molecule directly, but rather the electric field generated by this charge. The field is stronger above areas of the molecule that are charged, leading to a greater KPFM signal. Furthermore, oppositely charged areas yield a different contrast because the direction of the electric field is reversed. This leads to the light and dark areas in the micrograph (or red and blue areas in colored ones).

Naphthalocyanine, a cross-shaped symmetric organic molecule which was also used in IBM's single-molecule logic switch**, was found to be an ideal candidate for this study. It features two hydrogen atoms opposing each other in the center of a molecule measuring only two nanometers in size. The hydrogen atoms can be switched controllably between two different configurations by applying a voltage pulse. This so-called tautomerization affects the charge distribution in the molecule, which redistributes itself between opposing legs of the molecules as the hydrogen atoms switch their locations.

Using KPFM, the scientists managed to image the different charge distributions for the two states. To achieve submolecular resolution, a high degree of thermal and mechanical stability and atomic precision of the instrument was required over the course of the experiment, which lasted several days.

Moreover, adding just a single carbon monoxide molecule to the apex of the tip enhanced the resolution greatly. In 2009, the team has already shown that this modification of the tip allowed them to resolve the chemical structures of molecules with AFM. The present experimental findings were corroborated by first-principle density functional theory calculations done by Fabian Mohn together with Nikolaj Moll of the Computational Sciences group at IBM Research - Zurich.

The scientific paper entitled "Imaging the charge distribution within a single molecule" by F. Mohn, L. Gross, N. Moll, and G. Meyer was published online in Nature Nanotechnology, DOI: 10.1038/NNANO.2012.20 (26 February 2012).

####

For more information, please click here

Contacts:
Christopher P. Sciacca
Manager, Communications
IBM Research - Zurich
office +41 44 72 48 443


Michael Loughran
IBM Research
914-945-1613

Copyright © PR Newswire Association LLC.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

* cited from the ERC press release, January 24, 2012:

** P. Liljeroth, J. Repp, and G. Meyer, "Current-Induced Hydrogen Tautomerization and Conductance Switching of Naphthalocyanine Molecules", Science 317, p.1203–1206 (2007), DOI: 10.1126/science.1144366

Related News Press

News and information

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Physics

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Imaging

Industry’s First Dedicated Cryo-DualBeam System Automates Preparation of Frozen, Biological Samples: New Thermo Scientific Aquilos FIB/SEM protects sample integrity and enhances productivity for cryo-electron tomography workflow August 8th, 2017

Thermo Fisher Scientific Advances Cryo-EM Leadership to Drive Structural Biology Discoveries: New Thermo Scientific Krios G3i raises bar for performance, automation and time-to-results Breakthrough Thermo Scientific Glacios provides a cryo-EM entry path for a broader range of res August 8th, 2017

New Quattro Field Emission ESEM Emphasizes Versatility and Ease of Use: Thermo Scientific Quattro ESEM allows materials science researchers to study nanoscale structure in almost any material under a range of environmental conditions August 8th, 2017

Thermo Fisher Scientific’s New Talos F200i S/TEM Delivers Flexible, High-Performance Imaging: New compact S/TEM can be configured to meet specific imaging and analytical requirements for materials characterization in research laboratories August 8th, 2017

Chip Technology

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Surprise discovery in the search for energy efficient information storage August 10th, 2017

GLOBALFOUNDRIES Demonstrates 2.5D High-Bandwidth Memory Solution for Data Center, Networking, and Cloud Applications: Solution leverages 2.5D packaging with low-latency, high-bandwidth memory PHY built on FX-14™ ASIC design system August 9th, 2017

Discoveries

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Announcements

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Tools

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

FRITSCH • Milling and Sizing! Innovations at POWTECH 2017 - Hall 2 • Stand 227 August 9th, 2017

New Quattro Field Emission ESEM Emphasizes Versatility and Ease of Use: Thermo Scientific Quattro ESEM allows materials science researchers to study nanoscale structure in almost any material under a range of environmental conditions August 8th, 2017

Thermo Fisher Scientific’s New Talos F200i S/TEM Delivers Flexible, High-Performance Imaging: New compact S/TEM can be configured to meet specific imaging and analytical requirements for materials characterization in research laboratories August 8th, 2017

Energy

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Rice U. scientists map ways forward for lithium-ion batteries for extreme environments: Paper details developments toward high-temperature batteries July 27th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

Solar/Photovoltaic

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Controlled manipulation: Scientists at FAU are investigating the properties of hybrid systems consisting of carbon nanostructures and a dye August 8th, 2017

Simultaneous Design and Nanomanufacturing Speeds Up Fabrication: Method enhances broadband light absorption in solar cells August 5th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project