Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Light-Emitting Nanocrystal Diodes Go UltraViolet: Biomedical device potential for robust, implantable product

Embedding nanocrystals in glass provides a way to create UV-producing LEDs for biomedical applications. Image credit Los Alamos National Laboratory.
Embedding nanocrystals in glass provides a way to create UV-producing LEDs for biomedical applications. Image credit Los Alamos National Laboratory.

Abstract:
A multinational team of scientists has developed a process for creating glass-based, inorganic light-emitting diodes (LEDs) that produce light in the ultraviolet range. The work, reported this week in the online Nature Communications, is a step toward biomedical devices with active components made from nanostructured systems.

Light-Emitting Nanocrystal Diodes Go UltraViolet: Biomedical device potential for robust, implantable product

Los Alamos, NM | Posted on February 24th, 2012

LEDs based on solution-processed inorganic nanocrystals have promise for use in environmental and biomedical diagnostics, because they are cheap to produce, robust, and chemically stable. But development has been hampered by the difficulty of achieving ultraviolet emission. In their paper, Los Alamos National Laboratory's Sergio Brovelli in collaboration with the research team lead by Alberto Paleari at the University of Milano-Bicocca in Italy describe a fabrication process that overcomes this problem and opens the way for integration in a variety of applications.

The world needs light-emitting devices that can be applied in biomedical diagnostics and medicine, Brovelli said, either asactive lab-on-chip diagnostic platforms or as light sources that can be implanted into the body to trigger some photochemical reactions. Such devices could, for example, selectively activate light-sensitive drugs for better medical treatment or probe for the presence of fluorescent markers in medical diagnostics. These materials would need to be fabricated cheaply, on a large scale, and integrated into existing technology.

The paper describes a new glass-based material, able to emit light in the ultraviolet spectrum, and be integrated onto silicon chips that are the principal components of current electronic technologies.

The new devices are inorganic and combine the chemical inertness and mechanical stability of glass with the property of electric conductivity and electroluminescence (i.e. the ability of a material to emit light in response to the passage of an electric current).

As a result, they can be used in harsh environments, such as for immersion into physiologic solutions, or by implantation directly into the body. This was made possible by designing a new synthesisstrategy that allows fabrication of all inorganic LEDs via a wet-chemistry approach, i.e. a series of simple chemical reactions in a beaker. Importantly, this approach is scalable to industrial quantities with a very low start-upcost. Finally, they emit in the ultraviolet region thanks to careful design of the nanocrystals embedded in the glass.

In traditional light-emitting diodes, light emission occurs at the sharp interface between two semiconductors. The oxide-in-oxide design used here is different, as it allows production of a material that behaves as an ensemble of semiconductor junctions distributed in the glass.

This new concept is based on a collection of the most advanced strategies in nanocrystal science, combining the advantages of nanometric materials consisting of more than one component. In this case the active part of the device consists of tin dioxide nanocrystals covered with a shell of tin monoxide embedded in standard glass: by tuning the shell thickness is it possible to control the electrical response of the whole material.

The paper was produced with the financial support of Cariplo Foundation, Italy, under Project 20060656, the Russian Federation under grant 11.G34.31.0027, the Silvio Tronchetti Provera Foundation, and Los Alamos National Laboratory's Directed Research and Development Program.

1. Department of Materials Science, University of Milano-Bicocca, Italy.

2. Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico.

3. Material Processing Center, Massachusetts Institute of Technology, Cambridge, Massachusetts..

4. On leave from Photonic Corp, Culver City, California.

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, isoperated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Contacts:
Nancy Ambrosiano
505.667.0471

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper is titled, “Fully inorganic oxide-in-oxide ultraviolet nanocrystal light emitting devices,” and can be downloaded from the following online Nature Communications link.

Related News Press

News and information

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Laboratories

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Student Nanotechnology Laboratories Network Set Up in Iran December 15th, 2014

Display technology/LEDs/SS Lighting/OLEDs

Unraveling the light of fireflies December 17th, 2014

TCL Launches World’s Most Advanced TV in the World’s Largest Market: New Quantum Dot TVs with Color IQ™ Optics Deliver OLED-Quality Color at a Fraction of the Price December 15th, 2014

Dartmouth researchers create 'green' process to reduce molecular switching waste December 15th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Discoveries

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Announcements

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Research partnerships

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Unraveling the light of fireflies December 17th, 2014

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE