Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New nanotechnology converts heat into power when it's needed most

Wake Forest graduate student Corey Hewitt holds a piece of Power Felt developed in the Center for Nanotechnology and Molecular Materials.

Credit: Wake Forest University
Wake Forest graduate student Corey Hewitt holds a piece of Power Felt developed in the Center for Nanotechnology and Molecular Materials.

Credit: Wake Forest University

Abstract:
Never get stranded with a dead cell phone again. A promising new technology called Power Felt, a thermoelectric device that converts body heat into an electrical current, soon could create enough juice to make another call simply by touching it.

New nanotechnology converts heat into power when it's needed most

Winston-Salem, NC | Posted on February 22nd, 2012

Developed by researchers in the Center for Nanotechnology and Molecular Materials at Wake Forest University, Power Felt is comprised of tiny carbon nanotubes locked up in flexible plastic fibers and made to feel like fabric. The technology uses temperature differences - room temperature versus body temperature, for instance - to create a charge.

Their research appears in the current issue of Nano Letters, a leading journal in nanotechnology.

"We waste a lot of energy in the form of heat. For example, recapturing a car's energy waste could help improve fuel mileage and power the radio, air conditioning or navigation system," says researcher and Wake Forest graduate student Corey Hewitt. "Generally thermoelectrics are an underdeveloped technology for harvesting energy, yet there is so much opportunity."

Potential uses for Power Felt include lining automobile seats to boost battery power and service electrical needs, insulating pipes or collecting heat under roof tiles to lower gas or electric bills, lining clothing or sports equipment to monitor performance, or wrapping IV or wound sites to better track patients' medical needs.

"Imagine it in an emergency kit, wrapped around a flashlight, powering a weather radio, charging a prepaid cell phone," said David Carroll, director of the Center for Nanotechnology and Molecular Materials. "Power Felt could provide relief during power outages or accidents."

Cost has prevented thermoelectrics from being used more widely in consumer products. Standard thermoelectric devices use a much more efficient compound called bismuth telluride to turn heat into power in products including mobile refrigerators and CPU coolers, but researchers say it can cost $1,000 per kilogram. Like silicon, they liken Power Felt's affordability to demand in volume and think someday it could cost only $1 to add to a cell phone cover.

Currently, 72 stacked layers in the fabric yield about 140 nanowatts of power. The team is evaluating several ways to add more nanotube layers and make them even thinner to boost the power output.

Although there's more work to do before Power Felt is ready for market, Hewitt says, "I imagine being able to make a jacket with a completely thermoelectric inside liner that gathers warmth from body heat, while the exterior remains cold from the outside temperature. If the Power Felt is efficient enough, you could potentially power an iPod, which would be great for distance runners. It's definitely within reach."

Wake Forest is in talks with investors to produce Power Felt commercially.

####

About Wake Forest University
Wake Forest University combines the best traditions of a small liberal arts college with the resources of a large research university. Founded in 1834, the school is located in Winston-Salem, N.C. The University's graduate school of arts and sciences, divinity school, and nationally ranked schools of law, medicine and business enrich our intellectual environment. Learn more about Wake Forest University at www.wfu.edu.

For more information, please click here

Contacts:
Katie Neal

336-758-6141

Copyright © Wake Forest University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizardŽ AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

Discoveries

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Announcements

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizardŽ AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

Energy

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Nickel ferrite promotes capacity and cycle stability of lithium-sulfur battery June 13th, 2018

Northwestern researchers predict materials to stabilize record-high capacity lithium-ion battery: Advancement could pave the way for less expensive, longer-lasting batteries for electric vehicles May 29th, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project