Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Pitt researchers coax gold into nanowires: Discovery is designed to allow inexpensive detection of poisonous industrial gases by workers wearing small sensor chips filled with gold nanowires

Abstract:
Researchers at the University of Pittsburgh have coaxed gold into nanowires as a way of creating an inexpensive material for detecting poisonous gases found in natural gas. Along with colleagues at the National Energy Technology Laboratory (NETL), Alexander Star, associate professor of chemistry in Pitt's Kenneth P. Dietrich School of Arts and Sciences and principal investigator of the research project, developed a self-assembly method that uses scaffolds (a structure used to hold up or support another material) to grow gold nanowires. Their findings, titled "Welding of Gold Nanoparticles on Graphitic Templates for Chemical Sensing," were published online Jan. 22 in the Journal of the American Chemical Society.

Pitt researchers coax gold into nanowires: Discovery is designed to allow inexpensive detection of poisonous industrial gases by workers wearing small sensor chips filled with gold nanowires

Pittsburgh, PA | Posted on February 21st, 2012

"The most common methods to sense gases require bulky and expensive equipment," says Star. "Chip-based sensors that rely on nanomaterials for detection would be less expensive and more portable as workers could wear them to monitor poisonous gases, such as hydrogen sulfide."

Star and his research team determined gold nanomaterials would be ideal for detecting hydrogen sulfide owing to gold's high affinity for sulfur and unique physical properties of nanomaterials. They experimented with carbon nanotubes and graphene—an atomic-scale chicken wire made of carbon atoms—and used computer modeling, X-ray diffraction, and transmission electron microscopy to study the self-assembly process. They also tested the resulting materials' responses to hydrogen sulfide.

"To produce the gold nanowires, we suspended nanotubes in water with gold-containing chloroauric acid," says Star. "As we stirred and heated the mixture, the gold reduced and formed nanoparticles on the outer walls of the tubes. The result was a highly conductive jumble of gold nanowires and carbon nanotubes."

To test the nanowires' ability to detect hydrogen sulfide, Star and his colleagues cast a film of the composite material onto a chip patterned with gold electrodes. The team could detect gas at levels as low as 5ppb (parts per billion)—a detection level comparable to that of existing sensing techniques. Additionally, they could detect the hydrogen sulfide in complex mixtures of gases simulating natural gas. Star says the group will now test the chips' detection limits using real samples from gas wells.

Also involved in the study were Dan Sorescu, research physicist at NETL, who performed computational modeling of the gold nanowire formation; Mengning Ding, a Pitt graduate student in chemistry, who performed experimental work and synthesized and characterized gold nanowires and measured their sensor response; and Gregg Kotchey, a fellow Pitt graduate student in chemistry, who synthesized some of the graphene templates used in this study.

Funding for this work was provided by NETL in support of ongoing research in sensor systems and diagnostics.

####

For more information, please click here

Contacts:
B. Rose Huber

412-624-4356

Copyright © University of Pittsburgh

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Lab-on-a-chip

Smart hydrogel coating creates 'stick-slip' control of capillary action July 27th, 2015

Miniature Technology, Large-Scale Impact: Winner of the 2015 Lindros Award for translational medicine, Kjeld Janssen is pushing the boundaries of the emerging lab-on-a-chip technology July 7th, 2015

Injectable electronics: New system holds promise for basic neuroscience, treatment of neuro-degenerative diseases June 8th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Chip Technology

Nanometrics Announces Upcoming Investor Events July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Sensors

American Chemical Society expands reach to include rapidly emerging area of sensor science July 25th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Iranian Scientists Create Best Conditions for Synthesis of Gold Nanolayers July 23rd, 2015

Nanopaper as an optical sensing platform July 23rd, 2015

Discoveries

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Announcements

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Energy

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project