Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > To make better fuel cells, study the defects

Provided/Chen Lab
When Amplex Red connects with a gold catalyst the structure is changed to make a fluorescent molecule that immediately emits a flash of light, showing where the catalytic event took place. Right, electron microphoto of a single gold nanorod, encased in a poirus silica shell. The shell keeps rods from clumping together and allows experimenters to use heat to clean away a coating that forms when the rods are created.
Provided/Chen Lab

When Amplex Red connects with a gold catalyst the structure is changed to make a fluorescent molecule that immediately emits a flash of light, showing where the catalytic event took place. Right, electron microphoto of a single gold nanorod, encased in a poirus silica shell. The shell keeps rods from clumping together and allows experimenters to use heat to clean away a coating that forms when the rods are created.

Abstract:
Engineers trying to improve fuel-cell catalysts may be looking in the
wrong place, according to new research at Cornell.

To make better fuel cells, study the defects

Ithaca, NY | Posted on February 20th, 2012

There is growing interest in forming the catalysts that break down fuel
to generate electricity into nanoparticles. Nanoparticles provide a
larger surface area to speed reactions, and in some cases, materials
that are not catalytic in bulk become so at the nanoscale.

These nanoparticles, typically just a few tens of nanometers (nm) wide,
are not neat little spheres, but rather jagged chunks, like microscale
gravel, and researchers have found that they can correlate catalytic
activity with information about the number and type of their surface
facets. But they may be looking at the forest and ignoring the trees.

"People measure the activity of a sample and then try to understand by
using facet information," said Peng Chen, associate professor of
chemistry and chemical biology. "The message we want to deliver is that
surface defects [on the facets] dominate the catalysis."

Chen's research is reported Feb. 19 in the online edition of the
journal Nature Nanotechnology.

Instead of particles, Chen's research group studied catalytic events on
gold "nanorods" up to 700 nm long, effectively letting them see how
activity varies over a single facet. Gold acts as a catalyst to convert
a chemical called Amplex Red into resorufin, which is fluorescent.

Each time a catalytic event occurs, the newly created molecule of
resorufin emits a flash of light that is detected by a digital camera
looking through a microscope. A flash typically appears as several
pixels, and additional computer processing averages their brightness to
pinpoint the actual event to within a few nanometers. The researchers
call the technique "super-resolution microscopy." After flooding a
field of nanorods with a solution of Amplex Red, they made a "movie"
with one frame every 25 milliseconds.

The researchers found more catalytic events near the middle of a rod,
tapering off toward the ends and a jump back up at the ends. They also
found variation in the amount of activity from one rod to another, even
though all the rods have the same types of facets.

To explain the results, they proposed that activity is higher in areas
where there are more surface defects. The nanorods are made by growing
gold crystals from a small "seed" crystal, growing outward from the
center to the ends, Chen explained, and more defects form at the
beginning of the process.

"Knowledge of the surface facets ... is insufficient to predict
reactivity," the researchers said in their paper. "Surface defects
can also play a dominant role."

The findings with a gold catalyst and fluorescent molecules should be
equally applicable to other catalysts, including those used in fuel
cells and for pollution remediation, Chen said.

The research was supported in part by the Army Research Office, the
National Science Foundation (NSF), the Department of Energy and the
Alfred P. Sloan Foundation. Part of the work was carried out at the
Cornell Center for Materials Research and the Cornell Nanoscale Science
and Technology Facility, both supported by NSF.

####

For more information, please click here

Contacts:
Bill Steele

(607) 255-7164

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Zenosense, Inc. - Hospital Collaboration - 400 Person Lung Cancer Detection Trial December 17th, 2014

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Discoveries

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Announcements

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Military

UCLA engineers first to detect and measure individual DNA molecules using smartphone microscope December 15th, 2014

Nanoshaping method points to future manufacturing technology December 11th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Industrial Nanotech, Inc. Expands Government and Defense Projects December 10th, 2014

Fuel Cells

Toward a low-cost 'artificial leaf' that produces clean hydrogen fuel December 3rd, 2014

Single-atom gold catalysts may offer path to low-cost production of fuel and chemicals November 28th, 2014

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE