Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A step toward better electronics: Researchers develop new way to oxidize promising graphene

Abstract:
Researchers at Northwestern University have developed a new method for chemically altering graphene, a development that could be a step toward the creation of faster, thinner, flexible electronics.

A step toward better electronics: Researchers develop new way to oxidize promising graphene

Chicago, IL | Posted on February 19th, 2012

Highly desired for its many promising attributes, graphene is a one-atom thick, honeycomb-shaped lattice of carbon atoms with exceptional strength and conductivity. Among graphene's many possible applications is electronics: Many experts believe it could rival silicon, transforming integrated circuits and leading to ultra-fast computers, cellphones and related portable electronic devices.

But first, researchers must learn how to tune the electronic properties of graphene -- not an easy feat, given a major challenge intrinsic to the material. Unlike semiconductors such as silicon, pure graphene is a zero band-gap material, making it difficult to electrically "turn off" the flow of current through it. Therefore, pristine graphene is not appropriate for the digital circuitry that comprises the vast majority of integrated circuits.

To overcome this problem and make graphene more functional, researchers around the world are investigating methods for chemically altering the material. The most prevalent strategy is the "Hummers method," a process developed in the 1940s that oxidizes graphene, but that method relies upon harsh acids that irreversibly damage the fabric of the graphene lattice.

Researchers at Northwestern's McCormick School of Engineering and Applied Science have recently developed a new method to oxidize graphene without the collateral damage encountered in the Hummers method. Their oxidation process is also reversible, which enables further tunability over the resulting properties of their chemically modified graphene.

The paper, "Chemically Homogeneous and Thermally Reversible Oxidation of Epitaxial Graphene," will be published Feb. 19 in the journal Nature Chemistry.

"Performing chemical reactions on graphene is very difficult," said Mark C. Hersam, professor of materials science and engineering at the McCormick School. "Typically, researchers employ aggressive acidic conditions, such as those utilized in the Hummers method, that damage the lattice and result in a material that is difficult to control.

"In our method, however, the resulting graphene oxide is chemically homogeneous and reversible — leading to well-controlled properties that can likely be exploited in high-performance applications," said Hersam, who is also a professor of chemistry and of medicine.

To create the graphene oxide, researchers leaked oxygen gas (O2) into an ultra-high vacuum chamber. Inside, a hot tungsten filament was heated to 1500 degrees Celsius, causing the oxygen molecules to dissociate into atomic oxygen. The highly reactive oxygen atoms then uniformly inserted into the graphene lattice.

The resulting material possesses a high degree of chemical homogeneity. Spectroscopic measurements show that the electronic properties of the graphene vary as a function of oxygen coverage, suggesting that this approach can tune the properties of graphene-based devices. "It's unclear if this work will impact real-world applications overnight," Hersam said. "But it appears to be a step in the right direction."

Next, researchers will explore other means of chemically modifying graphene to develop a wider variety of materials, much like scientists did for plastics in the last century.

"Maybe oxygen isn't enough," Hersam said. "Through chemical modification, the scientific community has developed a wide range of polymers, from hard plastics to nylon. We hope to realize the same degree of tunability for graphene."

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Graphene

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Graphenea opens US branch October 16th, 2014

Charged graphene gives DNA a stage to perform molecular gymnastics October 9th, 2014

Flexible Electronics

Crumpled graphene could provide an unconventional energy storage: Two-dimensional carbon “paper” can form stretchable supercapacitors to power flexible electronic devices October 4th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

'Greener,' low-cost transistor heralds advance in flexible electronics September 24th, 2014

Future flexible electronics based on carbon nanotubes: Study in Applied Physics Letters show how to improve nanotube transistor and circuit performance with fluoropolymers September 23rd, 2014

Chip Technology

Sussex physicists find simple solution for quantum technology challenge October 28th, 2014

Watching the hidden life of materials: Ultrafast electron diffraction experiments open a new window on the microscopic world October 27th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Nanoelectronics

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Discoveries

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Materials/Metamaterials

Production of Biocompatible Polymers in Iran October 30th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Watching the hidden life of materials: Ultrafast electron diffraction experiments open a new window on the microscopic world October 27th, 2014

Polymeric Scaffold Recreates Bladder Tissue October 27th, 2014

Announcements

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE