Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Boiling breakthrough: Nano-coating doubles rate of heat transfer

Abstract:
By adding an incredibly thin coating of alumina to a metal surface, researchers at the Georgia Institute of Technology have doubled the rate that heat travels from a solid surface - such as a pot on a stove - into the liquid in the pot. The results are published in the American Institute of Physics' journal Applied Physics Letters.

Boiling breakthrough: Nano-coating doubles rate of heat transfer

College Park, MD | Posted on February 15th, 2012

Pool boiling is the most common and familiar method of heating a container's contents, and is a remarkably efficient heat transfer method. The transfer of heat in this case is referred to as the "heat flux." There exists, however, a critical point at which a solid surface gets too hot and pool-boiling efficiency is lost.

"Delaying the critical flux could play an important role in advancing thermal management of electronics as well as improving the efficiency of a number of energy systems," says Bo Feng, Ph.D., the Georgia Tech researcher leading this project.

In boiling, bubbles carry away large amounts of heat from solid surfaces, but the bubbles also act as an insulator, preventing the liquid from rewetting the surface and thereby interrupting heat transfer. The alumina coating - only a few hundreds of atoms thick (1/1,000 the thickness of a human hair) - has a high affinity to water and, as a result, facilitates the rapid rewetting of the solid surface.

"This is the primary reason for the enhancement of heat transfer," says Feng. An atomic layer deposition technique was used to control the thickness. By achieving such a thin coating, the additional layer of alumina did not appreciably increase thermal resistance, but it did increase the overall heat transfer.

"The potential contribution of this investigation lies in tailoring the wettability of surfaces at the nanometer scale, thereby greatly increasing the heat transfer during pool boiling," adds G.P. "Bud" Peterson, Ph.D., director of Georgia Tech's Two-Phase Heat Transfer Lab. "This is especially promising for applications where the implementation of nanotube or nanowire arrays are possible."

Nanotube and nanowire arrays are another effective way to enhance pool boiling heat transfer. Combining these two techniques - nanotube and/or nanowire arrays and nano-coating by atomic layer deposition - may increase pool-boiling efficiency even further.

Article: "Enhancement of Critical Heat Flux in Pool Boiling Using Atomic Layer Deposition of Alumina" is published in Applied Physics Letters.

Authors: Bo Feng (1), Keith Weaver (1), and G. P. Peterson (1).

(1) George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Ga.

####

For more information, please click here

Contacts:
Charles E. Blue

301-209-3091

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

Physics

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Nanotubes/Buckyballs

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Discoveries

Iranian Scientists Separate Zinc Ion at Low Concentrations September 20th, 2014

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

Announcements

Iranian Scientists Separate Zinc Ion at Low Concentrations September 20th, 2014

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE