Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > The right recipe: Engineering research improves laser detectors, batteries

Abstract:
Think of it as cooking with carbon spaghetti: A Kansas State University researcher is developing new ways to create and work with carbon nanotubes -- ultrasmall tubes that look like pieces of spaghetti or string.

The right recipe: Engineering research improves laser detectors, batteries

Manhattan, KS | Posted on February 6th, 2012

These carbon nanotubes -- made of graphene, an atom-thick sheet of carbon -- have the perfect ingredients for improving laser detectors and rechargeable batteries, according to research by Gurpreet Singh, assistant professor of mechanical and nuclear engineering. Singh is working on several projects with carbon nanotubes and polymer-derived ceramic material.

One project involves new ways to cook or create a ceramic carbon nanotube material. The conventional way to make this type of material is to take a liquid polymer, pour it into a mold and heat it in an oven until the polymer forms a ceramic.

Singh's team tried a new approach. They are among the first to create their own modified liquid polymer with four ingredients: silicon, boron, carbon and nitrogen. But rather than heating this liquid polymer in an oven, they heated it in a conventional microwave -- the kind used in kitchens. They found that the microwave heats the nanotubes just as well as an oven.

"What we did is reduce the time to construct ceramic," Singh said. "If you use an oven or heater, you have to heat it for awhile. With the microwave, it is fast heating within a few minutes."

Their work -- co-authored with their university colleague William Kuhn, professor of electrical and computer engineering -- recently appeared in the journal Applied Materials and Interfaces, published by the American Chemical Society. Another publication involving conventional processing will appear in the Journal of the American Ceramic Society.

Once this ceramic carbon nanotube material is created, it has multiple applications. Singh's team is involved in a project with the Laser Radiometry Team at the National Institute of Standards and Technology, or NIST, in Boulder, Colo., which works to develop measurement methods for high-power industrial lasers for manufacturing.

Singh's team is assisting the institute in improving how laser power is measured. Currently, laser measurements involve a cone-shaped copper detector covered in carbon paint. The laser shines through the cone, is absorbed by the black paint, heats the copper cone and then heats a waterfall at the detector's back end. By measuring the rising temperature of the water, scientists can determine the energy of the laser.

The Singh team has improved this process by making the cone-shaped detector out of the ceramic carbon nanotube composite material. Because ceramic can withstand high temperatures, it protects the nanotubes, which absorb the laser light to heat the cone.

"We are checking the stability of the material," Singh said. "We are characterizing it and then sending the samples to the NIST to test."

Another project for Singh's team uses the ceramic carbon nanotube material to improve the performance of rechargeable batteries. The material addresses four ways that rechargeable batteries can be improved: having a larger storage capacity, having a longer battery life, recharging quickly and providing a lot of power in a short amount of time.

These ceramic materials can reversibly store lithium, meaning that lithium can go in and come out of it. Current rechargeable batteries use graphite to store lithium. But as the graphite wears down, a battery become less efficient and will stay charged for a shorter amount of time.

The ability to recharge quickly and provide a lot of power in a short amount of time is especially key for electric cars. Many current electric car designs take several hours to recharge and take a long time to accelerate. Scientists wanting to create a battery that can recharge in a few minutes and provide power quickly may now have a solution.

Singh's team has already seen early success with their work: Preliminary research shows that when the ceramic material is used in batteries, it doubles or triples the battery's capacity for high current. The material is also thermodynamically stabile, so it can survive longer cycles.

"It would be really nice to have one material that has high capacity, can be charged quickly and also is stable," Singh said. "With this ceramic material, it should be strong enough so that over time it does not degrade. That's the ultimate goal."

Their battery work will appear later this year in the journal Nanomaterials and Energy, published by the Institution of Civil Engineers. The researchers are currently charging and recharging the batteries for several cycles to understand how long the batteries made from the materials can last.

A final project from Singh's team involves the use of "nano-fingers," which are sharp tungsten needles that can probe and pick up carbon nanotubes. The researchers use these nano-fingers under an electron microscope to perform studies with individual carbon nanotubes and ceramic nanowires.

Singh's research has been supported with $57,000 from the EPSCoR program with the National Science Foundation. His research team consists of two graduate students -- Romil Bhandavat and Lamuel David, both doctoral students in mechanical engineering, India,-- and one undergraduate student, Uriel Barrera, a sophomore in mechanical engineering, Olathe.

####

For more information, please click here

Contacts:
Source:
Gurpreet Singh
785-532-7085


Jennifer Tidball
785-532-0847

Copyright © Kansas State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Graphene/ Graphite

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Nanotubes/Buckyballs/Fullerenes

Nanotubes that build themselves April 14th, 2017

Intertronics introduce new nanoparticle deagglomeration technology March 15th, 2017

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility January 26th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

Sensors

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

A Sensitive And Dynamic Tactile Sensor Read more from Asian Scientist Magazine at: https://www.asianscientist.com/2017/04/tech/tactile-3d-active-matrix-sensor/ April 18th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

New technology could offer cheaper, faster food testing: Specialized droplets interact with bacteria and can be analyzed using a smartphone April 7th, 2017

Discoveries

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Materials/Metamaterials

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Announcements

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Automotive/Transportation

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

BASF and Landa partner to create revolutionary pigments for automotive coatings: The alliance combines BASF innovations with Landa nano-pigment technology April 5th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX Technology Platform: Leading-edge I-fuse brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

Bio-inspired energy storage: A new light for solar power: Graphene-based electrode prototype, inspired by fern leaves, could be the answer to solar energy storage challenge April 2nd, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Photonics/Optics/Lasers

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Method improves semiconductor fiber optics, paves way for developing devices April 16th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Photonics breakthough paving the way for improved wireless communication systems: The work could bolster the wireless revolution underway with efficiencies several orders of magnitude April 5th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project