Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > The right recipe: Engineering research improves laser detectors, batteries

Abstract:
Think of it as cooking with carbon spaghetti: A Kansas State University researcher is developing new ways to create and work with carbon nanotubes -- ultrasmall tubes that look like pieces of spaghetti or string.

The right recipe: Engineering research improves laser detectors, batteries

Manhattan, KS | Posted on February 6th, 2012

These carbon nanotubes -- made of graphene, an atom-thick sheet of carbon -- have the perfect ingredients for improving laser detectors and rechargeable batteries, according to research by Gurpreet Singh, assistant professor of mechanical and nuclear engineering. Singh is working on several projects with carbon nanotubes and polymer-derived ceramic material.

One project involves new ways to cook or create a ceramic carbon nanotube material. The conventional way to make this type of material is to take a liquid polymer, pour it into a mold and heat it in an oven until the polymer forms a ceramic.

Singh's team tried a new approach. They are among the first to create their own modified liquid polymer with four ingredients: silicon, boron, carbon and nitrogen. But rather than heating this liquid polymer in an oven, they heated it in a conventional microwave -- the kind used in kitchens. They found that the microwave heats the nanotubes just as well as an oven.

"What we did is reduce the time to construct ceramic," Singh said. "If you use an oven or heater, you have to heat it for awhile. With the microwave, it is fast heating within a few minutes."

Their work -- co-authored with their university colleague William Kuhn, professor of electrical and computer engineering -- recently appeared in the journal Applied Materials and Interfaces, published by the American Chemical Society. Another publication involving conventional processing will appear in the Journal of the American Ceramic Society.

Once this ceramic carbon nanotube material is created, it has multiple applications. Singh's team is involved in a project with the Laser Radiometry Team at the National Institute of Standards and Technology, or NIST, in Boulder, Colo., which works to develop measurement methods for high-power industrial lasers for manufacturing.

Singh's team is assisting the institute in improving how laser power is measured. Currently, laser measurements involve a cone-shaped copper detector covered in carbon paint. The laser shines through the cone, is absorbed by the black paint, heats the copper cone and then heats a waterfall at the detector's back end. By measuring the rising temperature of the water, scientists can determine the energy of the laser.

The Singh team has improved this process by making the cone-shaped detector out of the ceramic carbon nanotube composite material. Because ceramic can withstand high temperatures, it protects the nanotubes, which absorb the laser light to heat the cone.

"We are checking the stability of the material," Singh said. "We are characterizing it and then sending the samples to the NIST to test."

Another project for Singh's team uses the ceramic carbon nanotube material to improve the performance of rechargeable batteries. The material addresses four ways that rechargeable batteries can be improved: having a larger storage capacity, having a longer battery life, recharging quickly and providing a lot of power in a short amount of time.

These ceramic materials can reversibly store lithium, meaning that lithium can go in and come out of it. Current rechargeable batteries use graphite to store lithium. But as the graphite wears down, a battery become less efficient and will stay charged for a shorter amount of time.

The ability to recharge quickly and provide a lot of power in a short amount of time is especially key for electric cars. Many current electric car designs take several hours to recharge and take a long time to accelerate. Scientists wanting to create a battery that can recharge in a few minutes and provide power quickly may now have a solution.

Singh's team has already seen early success with their work: Preliminary research shows that when the ceramic material is used in batteries, it doubles or triples the battery's capacity for high current. The material is also thermodynamically stabile, so it can survive longer cycles.

"It would be really nice to have one material that has high capacity, can be charged quickly and also is stable," Singh said. "With this ceramic material, it should be strong enough so that over time it does not degrade. That's the ultimate goal."

Their battery work will appear later this year in the journal Nanomaterials and Energy, published by the Institution of Civil Engineers. The researchers are currently charging and recharging the batteries for several cycles to understand how long the batteries made from the materials can last.

A final project from Singh's team involves the use of "nano-fingers," which are sharp tungsten needles that can probe and pick up carbon nanotubes. The researchers use these nano-fingers under an electron microscope to perform studies with individual carbon nanotubes and ceramic nanowires.

Singh's research has been supported with $57,000 from the EPSCoR program with the National Science Foundation. His research team consists of two graduate students -- Romil Bhandavat and Lamuel David, both doctoral students in mechanical engineering, India,-- and one undergraduate student, Uriel Barrera, a sophomore in mechanical engineering, Olathe.

####

For more information, please click here

Contacts:
Source:
Gurpreet Singh
785-532-7085


Jennifer Tidball
785-532-0847

Copyright © Kansas State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Graphene/ Graphite

Researchers printed graphene-like materials with inkjet August 17th, 2017

From hot to cold: How to move objects at the nanoscale: Moving a single gold nanocluster on a graphene membrane, thanks to a thermal gradient applied to the borders: a new study sheds light on the physical mechanisms driving this phenomenon August 10th, 2017

Controlled manipulation: Scientists at FAU are investigating the properties of hybrid systems consisting of carbon nanostructures and a dye August 8th, 2017

Announcing the successful industrial feasibility test of a turnkey quantum Hall system for graphene characterisation and primary resistance metrology August 2nd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

Sensors

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Giant enhancement of electromagnetic waves revealed within small dielectric particles: Scientists have done for the first time direct measurements of giant electromagnetic fields July 8th, 2017

Discoveries

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Materials/Metamaterials

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Announcements

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Automotive/Transportation

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

GLOBALFOUNDRIES, Silicon Mobility Deliver the Industry’s First Automotive FPCU to Boost Performance for Hybrid and Electric Vehicles: Silicon Mobility and GF’s 55nm LPx -enabled platform, with SST’s highly-reliable SuperFlash® memory technology, boosts automotive performance, ene August 3rd, 2017

Rice U. scientists map ways forward for lithium-ion batteries for extreme environments: Paper details developments toward high-temperature batteries July 27th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Rice U. scientists map ways forward for lithium-ion batteries for extreme environments: Paper details developments toward high-temperature batteries July 27th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

Photonics/Optics/Lasers

Researchers printed graphene-like materials with inkjet August 17th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

High resolution without particle accelerator: A first for physics -- University of Jena physicists are first to achieve optical coherence tomography with XUV radiation at laboratory scale August 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project