Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > ORNL microscopy reveals 'atomic antenna' behavior in graphene

Electron microscopy at Oak Ridge National Laboratory has demonstrated that silicon atoms (seen in white) can act like "atomic antennae" in graphene and transmit an electronic signal at the atomic scale.
Electron microscopy at Oak Ridge National Laboratory has demonstrated that silicon atoms (seen in white) can act like "atomic antennae" in graphene and transmit an electronic signal at the atomic scale.

Abstract:
Atomic-level defects in graphene could be a path forward to smaller and faster electronic devices, according to a study led by researchers at the Department of Energy's Oak Ridge National Laboratory.

ORNL microscopy reveals 'atomic antenna' behavior in graphene

Oak Ridge, TN | Posted on January 31st, 2012

With unique properties and potential applications in areas from electronics to biodevices, graphene, which consists of a single sheet of carbon atoms, has been hailed as a rising star in the materials world. Now, an ORNL study published in Nature Nanotechnology suggests that point defects, composed of silicon atoms that replace individual carbon atoms in graphene, could aid attempts to transfer data on an atomic scale by coupling light with electrons.

"In this proof of concept experiment, we have shown that a tiny wire made up of a pair of single silicon atoms in graphene can be used to convert light into an electronic signal, transmit the signal and then convert the signal back into light," said coauthor Juan-Carlos Idrobo, who holds a joint appointment at ORNL and Vanderbilt University.

An ORNL-led team discovered this novel behavior by using aberration-corrected scanning transmission electron microscopy to image the plasmon response, or optical-like signals, of the point defects. The team's analysis found that the silicon atoms act like atomic-sized antennae, enhancing the local surface plasmon response of graphene, and creating a prototypical plasmonic device.

"The idea with plasmonic devices is that they can convert optical signals into electronic signals," Idrobo said. "So you could make really tiny wires, put light in one side of the wire, and that signal will be transformed into collective electron excitations known as plasmons. The plasmons will transmit the signal through the wire, come out the other side and be converted back to light."

Although other plasmonic devices have been demonstrated, previous research in surface plasmons has been focused primarily on metals, which has limited the scale at which the signal transfer occurs.

"When researchers use metal for plasmonic devices, they can usually only get down to 5 - 7 nanometers," said coauthor Wu Zhou. "But when you want to make things smaller, you always want to know the limit. Nobody thought we could get down to a single atom level."

In-depth analysis at the level of a single atom was made possible through the team's access to an electron microscope that is part of ORNL's Shared Research Equipment (ShaRE) User Facility.

"It is the one of only a few electron microscopes in the world that we can use to look at and study materials and obtain crystallography, chemistry, bonding, optical and plasmon properties at the atomic scale with single atom sensitivity and at low voltages," Idrobo said. "This is an ideal microscope for people who want to research carbon-based materials, such as graphene."

In addition to its microscopic observations, the ORNL team employed theoretical first-principles calculations to confirm the stability of the observed point defects. The full paper, titled "Atomically Localized Plasmon Enhancement in Monolayer Graphene," is available online here: www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2011.252.html.

Coauthors are ORNL's Jagjit Nanda; and Jaekwang Lee, Sokrates Pantelides and Stephen Pennycook, who are jointly affiliated with ORNL and Vanderbilt. The research was supported by DOE's Office of Science, which also sponsors ORNL's ShaRE User Facility; by the National Science Foundation; and by the McMinn Endowment at Vanderbilt University. The study used resources of the National Energy Research Scientific Computer Center, which is supported by DOE'S Office of Science.

####

About Oak Ridge National Laboratory
ORNL is managed by UT-Battelle for the Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov

For more information, please click here

Contacts:
Morgan McCorkle
Communications and Media Relations
865.574.7308

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Nanoparticles Give Antibacterial Properties to Machine-Woven Carpets August 4th, 2015

Promising Step Taken in Iran towards Treatment of Spinal Cord Injury August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Graphene

Better together: Graphene-nanotube hybrid switches August 3rd, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Laboratories

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Small tilt in magnets makes them viable memory chips August 3rd, 2015

Vaccine with virus-like nanoparticles effective treatment for RSV, study finds August 3rd, 2015

MIPT researchers clear the way for fast plasmonic chips August 3rd, 2015

Nanoparticles used to breach mucus barrier in lungs: Proof-of-concept study conducted in mice a key step toward better treatments for lung diseases August 3rd, 2015

Discoveries

Nanoparticles Give Antibacterial Properties to Machine-Woven Carpets August 4th, 2015

Nanoparticles used to breach mucus barrier in lungs: Proof-of-concept study conducted in mice a key step toward better treatments for lung diseases August 3rd, 2015

Promising Step Taken in Iran towards Treatment of Spinal Cord Injury August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Announcements

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Nanoparticles Give Antibacterial Properties to Machine-Woven Carpets August 4th, 2015

Promising Step Taken in Iran towards Treatment of Spinal Cord Injury August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project