Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Perfect nanotubes shine brightest: Rice University researchers show how length, imperfections affect carbon nanotube fluorescence

A video produced by the Rice University lab of chemist Bruce Weisman shows a selection of nanotubes fluorescing as they twist and turn in a solution. New work at Rice revealed how the fluorescent properties of specific types of nanotubes are influenced by the length of the tube and any imperfections. Weisman said those properties may be important to medical imaging and industrial applications. (Credit: Jason Streit/Rice University)
A video produced by the Rice University lab of chemist Bruce Weisman shows a selection of nanotubes fluorescing as they twist and turn in a solution. New work at Rice revealed how the fluorescent properties of specific types of nanotubes are influenced by the length of the tube and any imperfections. Weisman said those properties may be important to medical imaging and industrial applications. (Credit: Jason Streit/Rice University)

Abstract:
A painstaking study by Rice University has brought a wealth of new information about single-walled carbon nanotubes through analysis of their fluorescence.

Perfect nanotubes shine brightest: Rice University researchers show how length, imperfections affect carbon nanotube fluorescence

Houston, TX | Posted on January 31st, 2012

The current issue of the American Chemical Society journal ACS Nano features an article about work by the Rice lab of chemist Bruce Weisman to understand how the lengths and imperfections of individual nanotubes affect their fluorescence - in this case, the light they emit at near-infrared wavelengths.

The researchers found that the brightest nanotubes of the same length show consistent fluorescence intensity, and the longer the tube, the brighter. "There's a rather well-defined limit to how bright they appear," Weisman said. "And that maximum brightness is proportional to length, which suggests those tubes are not affected by imperfections."

But they found that brightness among nanotubes of the same length varied widely, likely due to damaged or defective structures or chemical reactions that allowed atoms to latch onto the surface.

The study first reported late last year by Weisman, lead author/former graduate student Tonya Leeuw Cherukuri and postdoctoral fellow Dmitri Tsyboulski detailed the method by which Cherukuri analyzed the characteristics of 400 individual nanotubes of a specific physical structure known as (10,2).

"It's a tribute to Tonya's dedication and talent that she was able to make this large number of accurate measurements," Weisman said of his former student.

The researchers applied spectral filtering to selectively view the specific type of nanotube. "We used spectroscopy to take this very polydisperse sample containing many different structures and study just one of them, the (10,2) nanotubes," Weisman said. "But even within that one type, there's a wide range of lengths."

Weisman said the study involved singling out one or two isolated nanotubes at a time in a dilute sample and finding their lengths by analyzing videos of the moving tubes captured with a special fluorescence microscope. The movies also allowed Cherukuri to catalog their maximum brightness.

"I think of these tubes as fluorescence underachievers," he said. "There are a few bright ones that fluoresce to their full potential, but most of them are just slackers, and they're half as bright, or 20 percent as bright, as they should be.

"What we want to do is change that distribution and leave no tube behind, try to get them all to the top. We want to know how their fluorescence is affected by growth methods and processing, to see if we're inflicting damage that's causing the dimming.

"These are insights you really can't get from measurements on bulk samples," he said.

Graduate student Jason Streit is extending Cherukuri's research. "He's worked up a way to automate the experiments so we can image and analyze dozens of nanotubes at once, rather than one or two. That will let us do in a couple of weeks what had taken months with the original method," Weisman said.

The research was supported by the Welch Foundation, the National Science Foundation and Applied NanoFluorescence.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to www.rice.edu/nationalmedia/Rice.pdf.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract here:

Read the ACS Nano article "How Nanotubes Get Their Glow" here:

Related News Press

News and information

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Could a demon help to create a quantum computer? Physicists implement a version of Maxwell's famous thought experiment for reducing entropy September 5th, 2018

Ultracold atoms used to verify 1963 prediction about 1D electrons: Rice University, University of Geneva study focuses on theory that's increasingly relevant to chipmakers September 5th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Carbon nanodots do an ultrafine job with in vitro lung tissue: New experiments highlight the role of charge and size when it comes to carbon nanodots that mimic the effect of nanoscale pollution particles on the human lung. September 12th, 2018

Graphene nanotubes outperform ammonium salts and carbon black in PU applications September 11th, 2018

S, N co-doped carbon nanotube-encapsulated CoS2@Co: Efficient and stable catalysts for water splitting September 10th, 2018

Peering into private life of atomic clusters -- using the world's tiniest test tubes September 6th, 2018

Discoveries

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Announcements

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project