Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Ferroelectric switching discovered for first time in soft biological tissue

Jiangyu Li, UW

Electrical response overlaid on the inner aortic wall.
Jiangyu Li, UW

Electrical response overlaid on the inner aortic wall.

Abstract:
The heart's inner workings are mysterious, perhaps even more so with a new finding. Engineers at the University of Washington have discovered an electrical property in arteries not seen before in mammalian tissues.

Ferroelectric switching discovered for first time in soft biological tissue

Seattle, WA | Posted on January 30th, 2012

The researchers found that the wall of the aorta, the largest blood vessel carrying blood from the heart, exhibits ferroelectricity, a response to an electric field known to exist in inorganic and synthetic materials. The findings are being published in an upcoming issue of the journal Physical Review Letters.

"The result is exciting for scientific reasons," said lead author Jiangyu Li, a UW associate professor of mechanical engineering. "But it could also have biomedical implications."

A ferroelectric material is an electrically polar molecule with one side positively charged and the other negatively charged, whose polarity can be reversed by applying an electrical field.

Ferroelectricity is common in synthetic materials and used for displays, memory storage, and sensors. (Related research by Li and colleagues seeks to exploit ferroelectric materials for tiny low-power, high-capacity computer memory chips.)

In the new study, Li collaborated with co-author Katherine Zhang at Boston University to explore the phenomenon in biological tissues. The only previous evidence of ferroelectricity in living tissue was reported last year in seashells. Others had looked in mammal tissue, mainly in bones, but found no signs of the property.

The new study shows clear evidence of ferroelectricity in a sample of a pig aorta. Researchers believe the findings would also apply to human tissue.

In subsequent work, yet to be published, they divided the sample into fibrous collagen and springy elastin and studied each one on its own. Pinpointing the source of the ferroelectricity may answer questions about how or whether it plays a role in the body.

"The elastin network is what gives the artery the mechanical property of elasticity, which of course is a very important function," Li said.

Ferroelectricity may therefore play a role in how the body responds to sugar or fat.

Diabetes is a risk factor for hardening of the arteries, or atherosclerosis, which can lead to heart attack or stroke. The team is investigating the interactions between ferroelectricity and charged glucose molecules, in hopes of better understanding sugar's effect on the mechanical properties of the aortic walls.

Another possible application is to treat a condition in which cholesterol molecules stick to the inside of the channel, eventually closing it off.

"We can imagine if we could manipulate the polarity of the artery wall, if we could switch it one way or the other, then we might, for example, better understand the deposition of cholesterol which leads to the thickening and hardening of the artery wall," Li said.

He cautions that medical applications are still speculations, and require more research.

"A lot of questions remain to be answered, that's an exciting aspect of the result," Li said.

Co-authors are Yuanming Liu and Qian Nataly Chen at the UW, and Yanhang Zhang and Ming-Jay Chow at Boston University.

The research was funded by the National Science Foundation, the National Institutes of Health, the Army Research Office, the UW's Center for Nanotechnology and a NASA Space Technology Research Fellowship.

####

For more information, please click here

Contacts:
Jiangyu Li
206-543-6226

Copyright © University of Washington

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See also an American Institute of Physics article about the finding:

Related News Press

News and information

Harris & Harris Group to Host Conference Call on Second-Quarter 2014 Financial Results on August 15, 2014 July 23rd, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Govt.-Legislation/Regulation/Funding/Policy

NNCO Announces an Interactive Webinar: Progress Review on the Coordinated Implementation of the National Nanotechnology Initiative 2011 Environmental, Health, and Safety Research Strategy July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Nanomedicine

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

SentiMag® Now Available in Australia and New Zealand July 21st, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Discoveries

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Announcements

Harris & Harris Group to Host Conference Call on Second-Quarter 2014 Financial Results on August 15, 2014 July 23rd, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Military

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Future Electronics May Depend on Lasers, Not Quartz July 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE