Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Disappearing gold a boon for nanolattices

Abstract:
When gold vanishes from a very important location, it usually means trouble. At the nanoscale, however, it could provide more knowledge about certain types of materials. A recent discovery that enables scientists to replace gold nanoparticles with dummy "spacers" has allowed scientists to create materials with never-before-seen structures, which may lead to new properties.

Disappearing gold a boon for nanolattices

Argonne, IL | Posted on January 29th, 2012

In a new study, researchers led by Professor Chad A. Mirkin from Northwestern University used the high-intensity X-rays provided at beamline 5-ID of the Advanced Photon Source (APS) at the U.S. Department of Energy's Argonne National Laboratory to look at "nanoparticle superlattices"—well-ordered arrangements of tiny nanoscale spheres that can be manipulated to take on a number of different properties.

Superlattices have several characteristics that make them especially appealing to materials scientists, said Northwestern graduate student Evelyn Auyeung, one of the lead authors of the study. "Superlattices are defined by the fact that they maintain a well-organized structure over relatively long distances," she said. "The advantage to an ordered structure is that it gives you a better opportunity to tune or program the characteristics of the material."

In previous experiments conducted at Argonne, scientists examined the effect of using DNA as a kind of glue to reinforce the lattice structure. It had been shown that DNA is a versatile tool that directs nanoparticles into a variety of one-, two-, and three-dimensional superlattices, where the lattice parameter and symmetries depended on the length of the DNA, as well as the size and shapes of the particles used.

By incorporating the spacer particle—one that had no inorganic core—in place of the gold nanoparticle, the researchers were able to transform the structure of a body-centered cubic lattice to a simple cubic lattice. They extended this technique to other binary lattices and were able to synthesize many exotic lattices, including one which has no natural or synthetic equivalent for any known material. "Using these dummy particles gives us access to an entirely new design space," Auyeung said. "The next step is to study the kind of properties that these lattices have thanks to the different arrangement of the nanoparticles. If we can fully investigate this design space, we might be able to access some new emergent properties from these materials."

The work was supported by the U.S. Department of Energy's Basic Energy Sciences program.

The Advanced Photon Source at Argonne National Laboratory is one of four synchrotron radiation light sources supported by the U.S. Department of Energy's Office of Science. The APS is the source of the Western Hemisphere's brightest x-ray beams for research in virtually every scientific discipline. More than 3,500 researchers representing universities, industry, and academic institutions from every U.S. state visit the APS each year to carry out both applied and basic research in support of the BES mission.

The results of the research were published in the January issue of Nature Nanotechnology.

By Jared Sagoff

####

About Argonne National Laboratory

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Jared Sagoff
630/252-5549

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Follow Argonne on Twitter at:

Related News Press

News and information

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Imaging

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

More light on cancer: Scientists created nanoparticles to highlight cancer cells May 21st, 2016

Laboratories

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

ORNL demonstrates large-scale technique to produce quantum dots May 21st, 2016

Govt.-Legislation/Regulation/Funding/Policy

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Discoveries

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Materials/Metamaterials

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Announcements

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Research partnerships

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic