Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Nano form of titanium dioxide can be toxic to marine organisms: Ultraviolet radiation is the catalyst for cellular damage in phytoplankton

Abstract:
The Bren School-based authors of a study published Jan. 20 in the journal PLoS ONE have observed toxicity to marine organisms resulting from exposure to a nanoparticle that had not previously been shown to be toxic under similar conditions.

Nano form of titanium dioxide can be toxic to marine organisms: Ultraviolet radiation is the catalyst for cellular damage in phytoplankton

Santa Barbara, CA | Posted on January 24th, 2012

Lead author and assistant research biologist Robert Miller and co-authors Arturo Keller and Hunter Lenihan - both Bren School professors and lead scientists at the UC Center for Environmental Implications of Nanotechnology (UC CEIN) - Bren Phd student Samuel Bennett, and Scott Pease, a former UCSB undergraduate and current graduate student in public health at the University of Washington, found that the nanoparticulate form of titanium dioxide (TiO2) exposed to ultraviolet radiation (UVR) can be toxic to marine organisms.

"Application of nanomaterials in consumer products and manufacturing is quickly increasing, but there is concern that these materials, including nanoparticles, may harm the environment," says Miller. "The oceans could be most at risk, since wastewater and factory discharges ultimately end up there."

Nano-titanium dioxide is highly reactive to sunlight and other forms of ultraviolet radiation (UVR,) the authors write, adding that TiO2's property of generating reactive oxygen species (ROS) when exposed to UVR makes it useful in antibacterial coatings and wastewater disinfection, and potentially valuable as an anti-cancer agent.

Until now, they say, no research has demonstrated that photoactivity causes environmental toxicity of TiO2 under natural levels of UVR.

"Previous experiments have suggested that TiO2 does not affect aquatic organisms, but these experiments used artificial lighting that generated much lower levels of UVR than sunlight," Miller explains. "In these new experiments, we used lights simulating natural sunlight."

But now, the authors say, "We show that relatively low levels of ultraviolet light, consistent with those found in nature, can induce toxicity of TiO2 nanoparticles to marine phytoplankton, the most important primary producers on Earth.

"With no exposure to UVR, the TiO2 had no effect on phytoplankton, but under low-intensity UVR, ROS in seawater increased with increasing concentrations of nano- TiO2."

The concern is that rising concentrations of nano- TiO2 "may lead to increased overall oxidative stress in seawater contaminated by TiO22, and cause decreased resiliency of marine ecosystems."

The authors suggest, therefore, that UVR exposure should be considered when conducting experiments to determine the ecotoxicity of nanomaterials having photoactive potential.

####

For more information, please click here

Contacts:
James Badham

805-893-5049

Copyright © University of California - Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Nanometrics Reports Second Quarter 2016 Financial Results July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Discoveries

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Announcements

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Nanometrics Reports Second Quarter 2016 Financial Results July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Environment

A 'smart dress' for oil-degrading bacteria July 24th, 2016

News from Quorum: The College of New Jersey use the Quorum Cryo-SEM preparation system in a project to study ice crystals in high altitude clouds July 19th, 2016

Researchers improve catalyst efficiency for clean industries: Method reduces use of expensive platinum July 8th, 2016

Electronic nose smells pesticides and nerve gas July 6th, 2016

Safety-Nanoparticles/Risk management

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

PETA science group publishes a review on pulmonary effects of nanomaterials: Archives of Toxicology publishes a review of scientific studies on fibrotic potential of nanomaterials May 26th, 2016

Common nanoparticle has subtle effects on oxidative stress genes May 11th, 2016

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic