Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > It works: Ultrafast magnetic processes observed 'live' using an X-ray laser

Detail of the structure of cupric oxide (CuO). The copper atoms (green) carry a magnetic moment, behaving like small compass needles. The direction of the magnetic moment is illustrated by a red arrow. A point means that the arrow is pointing out of the surface (we are looking at its sharp end), a cross shows that the arrow is pointing into the surface (we are looking at its tail end). The magnetic structure changes significantly as the temperature increases above 213 Kelvin (around -60C). One aspect of this change is a difference in the period of the magnetic order. Unlike the ordering at low temperatures, the magnetic structure in the temperature range 213 K to 230 K is incommensurate: its period does not fit with the period of the crystal structure of copper and oxygen atoms. To be precise, a full rotation of the direction of the magnetic moment does not require exactly four atomic separations, but a little more or a little less, depending on the direction.
Detail of the structure of cupric oxide (CuO). The copper atoms (green) carry a magnetic moment, behaving like small compass needles. The direction of the magnetic moment is illustrated by a red arrow. A point means that the arrow is pointing out of the surface (we are looking at its sharp end), a cross shows that the arrow is pointing into the surface (we are looking at its tail end). The magnetic structure changes significantly as the temperature increases above 213 Kelvin (around -60C). One aspect of this change is a difference in the period of the magnetic order. Unlike the ordering at low temperatures, the magnetic structure in the temperature range 213 K to 230 K is incommensurate: its period does not fit with the period of the crystal structure of copper and oxygen atoms. To be precise, a full rotation of the direction of the magnetic moment does not require exactly four atomic separations, but a little more or a little less, depending on the direction.

Abstract:
In first-of-their-kind experiments performed at the American X-ray laser LCLS, a collaboration led by researchers from the Paul Scherrer Institute has been able to precisely follow how the magnetic structure of a material changes. The study was carried out on cupric oxide (CuO). The change of structure was initiated by a laser pulse, and then, with the help of short X-ray pulses, near-instantaneous images were obtained at different points in time for individual intermediate steps during the process. It appears as if the structure begins to change 400 femtoseconds after the laser pulse strikes (1 femtosecond = 0.000 000 000 000 001 seconds). Apparently, the fundamental magnets within the material need that much time to communicate with each other and then react. In addition to this scientific result, the work proves that it is actually possible with X-ray lasers to follow certain types of extremely rapid magnetic processes. This is another milestone, because such investigations will also be a major focus of research at the planned Swiss X-ray Laser, SwissFEL, at PSI. The results could contribute to the development of new technologies for magnetic storage media for the future. The researchers have reported on their work in the latest edition of the technical journal Physical Review Letters (PRL).

It works: Ultrafast magnetic processes observed 'live' using an X-ray laser

Zurich, Switzerland | Posted on January 24th, 2012

Materials with particular magnetic properties are the basis of many current technologies, in particular, data storage on hard discs and in other media. For this, the magnetic orientation in the material is most often used: the atoms in the material behave to some extent like tiny rod magnets ("spins"). These mini-magnets can be oriented in different ways and information can be stored through their orientation. For efficient data storage, it is crucial that old data can be rapidly overwritten. This is possible if the magnetic orientation in a material can be altered in a very short time. To develop innovative materials which can store data quickly, it is therefore important to understand exactly how this change occurs as a function of time.

Magnetic orientation in motion

In experiments performed at the X-ray laser LCLS at Stanford, California, a collaboration led by researchers from the Paul Scherrer Institute have been able to study the magnetic orientation in cupric oxide, CuO. This material demonstrates completely different magnetic orientations depending on temperature: Below -60C, the spins, which function in the copper atoms (Cu) like magnets, point periodically in one direction and then the opposite; between -60C and -43C, they are arranged helically, as if they were forming a spiral staircase. Although the spin orientations for the two arrangements have been known for some time, the time required to move from one arrangement to the other has only now been shown by the experiment.

"In our investigation, we began with a 'cold' sample and then heated it with an intense flash of light from an optical laser", explains Steven Johnson, spokesman for the PSI experiment. "Shortly after this, we determined the structure of the sample by illuminating it with an extremely short pulse from an X-ray laser. When we repeated this at different time intervals between the flash of light and the X-ray pulse, we were able to reconstruct the course of the change in the magnetic structure."

Mini-magnets need 400 femtoseconds to agree amongst themselves.

The results show that it takes about 400 femtoseconds before the magnetic structure begins to alter visibly. Then the structure gradually reaches its final state. The more intense the initiating flash of light, the faster the change of state. "The spins of all copper atoms are involved in the magnetic structure. Thus the atoms at opposite ends of the material must be coordinated before the structure can change. This takes 400 femtoseconds", explains Urs Staub, one of the PSI researchers responsible. "For cupric oxide, that is the fundamental limit; it simply cannot happen faster than that. This depends upon how strongly the spins are coupled between neighbouring atoms."

There is a good reason why the researchers were particularly interested in cupric oxide. Along with the screw-like magnetic orientation that occurs between -60C and -43C, the material is also 'multiferroic', a material where electrical and magnetic processes mutually influence one another. These materials have many different potential areas of application where magnetism and electronics interact.

Important step for SwissFEL

The LCLS facility went into operation in 2009 as the first Free-Electron X-ray Laser in the world, and the PSI researchers were amongst the first to perform experiments at it. The extremely short pulses of only a few femtoseconds that it produces make it possible to follow the course of very rapid changes in materials, of which only the initial and final states have until now been known. The experiment on cupric oxide demonstrated that X-ray lasers can truly fulfil these expectations in studies on magnetic materials. Such investigations will also be a major focus of research at SwissFEL, the X-ray laser which is planned for PSI and which will begin operation in the year 2016, in the close vicinity of the existing PSI site.

####

About Paul Scherrer Institut (PSI)
The Paul Scherrer Institute (PSI) is a multi-disciplinary research centre for natural sciences and technology. In national and international collaboration with universities, other research institutes and industry, PSI is active in solid state physics, materials sciences, elementary particle physics, life sciences, nuclear and non-nuclear energy research, and energy-related ecology.
It is the largest national research institute with about 1,200 members of staff, and is the only one of its kind in Switzerland.

For more information, please click here

Contacts:
Dagmar Baroke
+41563102916


Dr. Urs Staub
Laboratory for Condensed Matter
Department of Synchrotron Radiation and Nanotechnology
Paul Scherrer Institute
5232 Villigen PSI, Switzerland
Tel: +41(0)56 310 4494


Prof. Dr. Steven Johnson (who performed the work outlined here while still
working as a scientist at the Paul Scherrer Institute)
ETH Zurich
Institute for Quantum Electronics
HPT D 15
Wolfgang-Pauli-Strasse 16
8093 Zurich
Tel: +41(0)44 633 76 31

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

SwissFEL - popular presentation:

Webpage of the SwissFEL project:

LCLS's Webpage:

Full bibliographic informationFemtosecond Dynamics of the Collinear-to-Spiral Antiferromagnetic Phase Transition in CuO

Related News Press

Physics

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

News and information

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Memory Technology

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Stanford team combines logic, memory to build a 'high-rise' chip: Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller December 15th, 2014

Graphene layer reads optical information from nanodiamonds electronically: Possible read head for quantum computers December 1st, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Discoveries

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Announcements

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Photonics/Optics/Lasers

Nanoshaping method points to future manufacturing technology December 11th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

New technique allows low-cost creation of 3-D nanostructures December 8th, 2014

Research partnerships

Unraveling the light of fireflies December 17th, 2014

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

New Technique Could Harvest More of the Sun's Energy December 9th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE