Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > It works: Ultrafast magnetic processes observed 'live' using an X-ray laser

Detail of the structure of cupric oxide (CuO). The copper atoms (green) carry a magnetic moment, behaving like small compass needles. The direction of the magnetic moment is illustrated by a red arrow. A point means that the arrow is pointing out of the surface (we are looking at its sharp end), a cross shows that the arrow is pointing into the surface (we are looking at its tail end). The magnetic structure changes significantly as the temperature increases above 213 Kelvin (around -60°C). One aspect of this change is a difference in the period of the magnetic order. Unlike the ordering at low temperatures, the magnetic structure in the temperature range 213 K to 230 K is incommensurate: its period does not ‘fit’ with the period of the crystal structure of copper and oxygen atoms. To be precise, a full rotation of the direction of the magnetic moment does not require exactly four atomic separations, but a little more or a little less, depending on the direction.
Detail of the structure of cupric oxide (CuO). The copper atoms (green) carry a magnetic moment, behaving like small compass needles. The direction of the magnetic moment is illustrated by a red arrow. A point means that the arrow is pointing out of the surface (we are looking at its sharp end), a cross shows that the arrow is pointing into the surface (we are looking at its tail end). The magnetic structure changes significantly as the temperature increases above 213 Kelvin (around -60°C). One aspect of this change is a difference in the period of the magnetic order. Unlike the ordering at low temperatures, the magnetic structure in the temperature range 213 K to 230 K is incommensurate: its period does not ‘fit’ with the period of the crystal structure of copper and oxygen atoms. To be precise, a full rotation of the direction of the magnetic moment does not require exactly four atomic separations, but a little more or a little less, depending on the direction.

Abstract:
In first-of-their-kind experiments performed at the American X-ray laser LCLS, a collaboration led by researchers from the Paul Scherrer Institute has been able to precisely follow how the magnetic structure of a material changes. The study was carried out on cupric oxide (CuO). The change of structure was initiated by a laser pulse, and then, with the help of short X-ray pulses, near-instantaneous images were obtained at different points in time for individual intermediate steps during the process. It appears as if the structure begins to change 400 femtoseconds after the laser pulse strikes (1 femtosecond = 0.000 000 000 000 001 seconds). Apparently, the fundamental magnets within the material need that much time to communicate with each other and then react. In addition to this scientific result, the work proves that it is actually possible with X-ray lasers to follow certain types of extremely rapid magnetic processes. This is another milestone, because such investigations will also be a major focus of research at the planned Swiss X-ray Laser, SwissFEL, at PSI. The results could contribute to the development of new technologies for magnetic storage media for the future. The researchers have reported on their work in the latest edition of the technical journal Physical Review Letters (PRL).

It works: Ultrafast magnetic processes observed 'live' using an X-ray laser

Zurich, Switzerland | Posted on January 24th, 2012

Materials with particular magnetic properties are the basis of many current technologies, in particular, data storage on hard discs and in other media. For this, the magnetic orientation in the material is most often used: the atoms in the material behave to some extent like tiny rod magnets ("spins"). These mini-magnets can be oriented in different ways and information can be stored through their orientation. For efficient data storage, it is crucial that old data can be rapidly overwritten. This is possible if the magnetic orientation in a material can be altered in a very short time. To develop innovative materials which can store data quickly, it is therefore important to understand exactly how this change occurs as a function of time.

Magnetic orientation in motion

In experiments performed at the X-ray laser LCLS at Stanford, California, a collaboration led by researchers from the Paul Scherrer Institute have been able to study the magnetic orientation in cupric oxide, CuO. This material demonstrates completely different magnetic orientations depending on temperature: Below -60°C, the spins, which function in the copper atoms (Cu) like magnets, point periodically in one direction and then the opposite; between -60°C and -43°C, they are arranged helically, as if they were forming a spiral staircase. Although the spin orientations for the two arrangements have been known for some time, the time required to move from one arrangement to the other has only now been shown by the experiment.

"In our investigation, we began with a 'cold' sample and then heated it with an intense flash of light from an optical laser", explains Steven Johnson, spokesman for the PSI experiment. "Shortly after this, we determined the structure of the sample by illuminating it with an extremely short pulse from an X-ray laser. When we repeated this at different time intervals between the flash of light and the X-ray pulse, we were able to reconstruct the course of the change in the magnetic structure."

Mini-magnets need 400 femtoseconds to agree amongst themselves.

The results show that it takes about 400 femtoseconds before the magnetic structure begins to alter visibly. Then the structure gradually reaches its final state. The more intense the initiating flash of light, the faster the change of state. "The spins of all copper atoms are involved in the magnetic structure. Thus the atoms at opposite ends of the material must be coordinated before the structure can change. This takes 400 femtoseconds", explains Urs Staub, one of the PSI researchers responsible. "For cupric oxide, that is the fundamental limit; it simply cannot happen faster than that. This depends upon how strongly the spins are coupled between neighbouring atoms."

There is a good reason why the researchers were particularly interested in cupric oxide. Along with the screw-like magnetic orientation that occurs between -60°C and -43°C, the material is also 'multiferroic', a material where electrical and magnetic processes mutually influence one another. These materials have many different potential areas of application where magnetism and electronics interact.

Important step for SwissFEL

The LCLS facility went into operation in 2009 as the first Free-Electron X-ray Laser in the world, and the PSI researchers were amongst the first to perform experiments at it. The extremely short pulses of only a few femtoseconds that it produces make it possible to follow the course of very rapid changes in materials, of which only the initial and final states have until now been known. The experiment on cupric oxide demonstrated that X-ray lasers can truly fulfil these expectations in studies on magnetic materials. Such investigations will also be a major focus of research at SwissFEL, the X-ray laser which is planned for PSI and which will begin operation in the year 2016, in the close vicinity of the existing PSI site.

####

About Paul Scherrer Institut (PSI)
The Paul Scherrer Institute (PSI) is a multi-disciplinary research centre for natural sciences and technology. In national and international collaboration with universities, other research institutes and industry, PSI is active in solid state physics, materials sciences, elementary particle physics, life sciences, nuclear and non-nuclear energy research, and energy-related ecology.
It is the largest national research institute with about 1,200 members of staff, and is the only one of its kind in Switzerland.

For more information, please click here

Contacts:
Dagmar Baroke
+41563102916


Dr. Urs Staub
Laboratory for Condensed Matter
Department of Synchrotron Radiation and Nanotechnology
Paul Scherrer Institute
5232 Villigen PSI, Switzerland
Tel: +41(0)56 310 4494


Prof. Dr. Steven Johnson (who performed the work outlined here while still
working as a scientist at the Paul Scherrer Institute)
ETH Zurich
Institute for Quantum Electronics
HPT D 15
Wolfgang-Pauli-Strasse 16
8093 Zurich
Tel: +41(0)44 633 76 31

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

SwissFEL - popular presentation:

Webpage of the SwissFEL project:

LCLS's Webpage:

Full bibliographic informationFemtosecond Dynamics of the Collinear-to-Spiral Antiferromagnetic Phase Transition in CuO

Related News Press

News and information

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

Physics

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Memory Technology

New technology of ultrahigh density optical storage researched at Kazan University: The ever-growing demand for storage devices stimulates scientists to find new ways of improving the performance of existing technologies November 30th, 2016

A Tiny Machine: UCSB electrical and computer engineers design an infinitesimal computing device October 28th, 2016

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Making the switch, this time with an insulator: Colorado State University physicists, joining the fundamental pursuit of using electron spins to store and manipulate information, have demonstrated a new approach to doing so, which could prove useful in the application of low-powe September 2nd, 2016

Discoveries

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Announcements

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Photonics/Optics/Lasers

ANU invention to inspire new night-vision specs December 7th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Controlled electron pulses November 30th, 2016

New method for analyzing crystal structure: Exotic materials called photonic crystals reveal their internal characteristics with new method November 30th, 2016

Research partnerships

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project