Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers provide new insight into how metals fail

Warner
Warner

Abstract:
The eventual failure of metals, such as the aluminum in ships and airplanes, can often be blamed on breaks, or voids, in the material's atomic lattice. They're at first invisible, only microns in size, but once enough of them link up, the metal eventually splits apart.

Researchers provide new insight into how metals fail

Ithaca, NY | Posted on January 23rd, 2012

Cornell engineers, trying to better understand this process, have discovered that nanoscale voids behave differently than the larger ones that are hundreds of thousands of atoms in scale, studied through traditional physics. This insight could lead to improved ability to predict how cracks grow in metals, and how to engineer better materials.

Graduate student Linh Nguyen and Derek Warner, assistant professor of civil and environmental engineering, reported their findings in the journal Physical Review Letters, Jan. 20. Using new atomistic simulation techniques, they concluded that the smallest voids in these materials, those having nanometer dimensions, don't contribute in the same way as microscale voids do in material failure at ordinary room temperatures and pressures.

When metals fail, a physical phenomenon known as plasticity often occurs, permanently deforming, or changing the shape of the material. Previously, it was theorized that both nanometer and microscale voids grow via plasticity as the material fails, but the new research says otherwise.

"While this was something amenable to study with traditional atomistic modeling approaches, the interpretation of previous results was difficult due to a longstanding challenge of time scaling," Warner said. "We've come up with a technique to better address that."

Nguyen and Warner's work is supported by the Office of Naval Research, which has particular interest in the use of aluminum and other lightweight, durable metals in high-performance ship structures.

####

For more information, please click here

Contacts:
Media Contact:
John Carberry
(607) 255-5353


Cornell Chronicle:
Anne Ju
(607) 255-9735

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Marine/Watercraft

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

'Quantum material' has shark-like ability to detect small electrical signals December 20th, 2017

Promising sensors for submarines, mines and spacecraft: MSU scientists are developing nanostructured gas sensors that would work at room temperature November 10th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Discoveries

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Materials/Metamaterials

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

High-power electronics keep their cool with new heat-conducting crystals July 6th, 2018

Announcements

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Military

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

High-power electronics keep their cool with new heat-conducting crystals July 6th, 2018

Aerospace/Space

Disability Can Be a Superpower in Space Disabled astronauts offer unique solutions to emergencies in space May 17th, 2018

SpaceX Founding Employee Tom Mueller to Speak at International Space Development Conference May 15th, 2018

Shrimp, Soybeans, and Tomatoes Top the Menu in Cities in Space May 10th, 2018

National Space Society Applauds NASA's Support for Commercial Low Earth Orbit Space Stations May 2nd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project