Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Cooling semiconductor by laser light

The experiments themselves are carried out in this vacuum chamber. When the laser light hits the membrane, some of the light is reflected and some is absorbed and leads to a small heating of the membrane. The reflected light is reflected back again via a mirror in the experiment so that the light flies back and forth in this space and forms optical resonator (cavity). Changing the distance between the membrane and the mirror leads to a complex and fascinating interplay between the movement of the membrane, the properties of the semiconductor and the optical resonances and you can control the system so as to cool the temperature of the membrane fluctuations.

Credit: Niels Bohr Institute
The experiments themselves are carried out in this vacuum chamber. When the laser light hits the membrane, some of the light is reflected and some is absorbed and leads to a small heating of the membrane. The reflected light is reflected back again via a mirror in the experiment so that the light flies back and forth in this space and forms optical resonator (cavity). Changing the distance between the membrane and the mirror leads to a complex and fascinating interplay between the movement of the membrane, the properties of the semiconductor and the optical resonances and you can control the system so as to cool the temperature of the membrane fluctuations.

Credit: Niels Bohr Institute

Abstract:
Researchers at the Niels Bohr Institute have combined two worlds - quantum physics and nano physics, and this has led to the discovery of a new method for laser cooling semiconductor membranes. Semiconductors are vital components in solar cells, LEDs and many other electronics, and the efficient cooling of components is important for future quantum computers and ultrasensitive sensors. The new cooling method works quite paradoxically by heating the material! Using lasers, researchers cooled membrane fluctuations to minus 269 degrees C. The results are published in the scientific journal, Nature Physics.

Cooling semiconductor by laser light

Copenhagen, Denmark | Posted on January 23rd, 2012

"In experiments, we have succeeded in achieving a new and efficient cooling of a solid material by using lasers. We have produced a semiconductor membrane with a thickness of 160 nanometers and an unprecedented surface area of 1 by 1 millimeter. In the experiments, we let the membrane interact with the laser light in such a way that its mechanical movements affected the light that hit it. We carefully examined the physics and discovered that a certain oscillation mode of the membrane cooled from room temperature down to minus 269 degrees C, which was a result of the complex and fascinating interplay between the movement of the membrane, the properties of the semiconductor and the optical resonances," explains Koji Usami, associate professor at Quantop at the Niels Bohr Institute.

From gas to solid

Laser cooling of atoms has been practiced for several years in experiments in the quantum optical laboratories of the Quantop research group at the Niels Bohr Institute. Here researchers have cooled gas clouds of cesium atoms down to near absolute zero, minus 273 degrees C, using focused lasers and have created entanglement between two atomic systems. The atomic spin becomes entangled and the two gas clouds have a kind of link, which is due to quantum mechanics. Using quantum optical techniques, they have measured the quantum fluctuations of the atomic spin.

"For some time we have wanted to examine how far you can extend the limits of quantum mechanics - does it also apply to macroscopic materials? It would mean entirely new possibilities for what is called optomechanics, which is the interaction between optical radiation, i.e. light, and a mechanical motion," explains Professor Eugene Polzik, head of the Center of Excellence Quantop at the Niels Bohr Institute at the University of Copenhagen.

But they had to find the right material to work with.

Lucky coincidence

In 2009, Peter Lodahl (who is today a professor and head of the Quantum Photonic research group at the Niels Bohr Institute) gave a lecture at the Niels Bohr Institute, where he showed a special photonic crystal membrane that was made of the semiconducting material gallium arsenide (GaAs). Eugene Polzik immediately thought that this nanomembrane had many advantageous electronic and optical properties and he suggested to Peter Lodahl's group that they use this kind of membrane for experiments with optomechanics. But this required quite specific dimensions and after a year of trying they managed to make a suitable one.

"We managed to produce a nanomembrane that is only 160 nanometers thick and with an area of more than 1 square millimetre. The size is enormous, which no one thought it was possible to produce," explains Assistant Professor Søren Stobbe, who also works at the Niels Bohr Institute.

Basis for new research

Now a foundation had been created for being able to reconcile quantum mechanics with macroscopic materials to explore the optomechanical effects.

Koji Usami explains that in the experiment they shine the laser light onto the nanomembrane in a vacuum chamber. When the laser light hits the semiconductor membrane, some of the light is reflected and the light is reflected back again via a mirror in the experiment so that the light flies back and forth in this space and forms an optical resonator. Some of the light is absorbed by the membrane and releases free electrons. The electrons decay and thereby heat the membrane and this gives a thermal expansion. In this way the distance between the membrane and the mirror is constantly changed in the form of a fluctuation.

"Changing the distance between the membrane and the mirror leads to a complex and fascinating interplay between the movement of the membrane, the properties of the semiconductor and the optical resonances and you can control the system so as to cool the temperature of the membrane fluctuations. This is a new optomechanical mechanism, which is central to the new discovery. The paradox is that even though the membrane as a whole is getting a little bit warmer, the membrane is cooled at a certain oscillation and the cooling can be controlled with laser light. So it is cooling by warming! We managed to cool the membrane fluctuations to minus 269 degrees C", Koji Usami explains.

"The potential of optomechanics could, for example, pave the way for cooling components in quantum computers. Efficient cooling of mechanical fluctuations of semiconducting nanomembranes by means of light could also lead to the development of new sensors for electric current and mechanical forces. Such cooling in some cases could replace expensive cryogenic cooling, which is used today and could result in extremely sensitive sensors that are only limited by quantum fluctuations," says Professor Eugene Polzik.

####

For more information, please click here

Contacts:
Gertie Skaarup

(45) 35-32-53-20

Koji Usami
Associate Professor, Quantop
Niels Bohr Institute
University of Copenhagen
45-3532-5268
45-2829-7487


Eugene Polzi
Professor, Head of Quantop
Niels Bohr Institute
University of Copenhagen
45-3532-5424
45-2338-2045

Copyright © University of Copenhagen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

National Conference on Nanomaterials, (NCN-2017) April 21st, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

Display technology/LEDs/SS Lighting/OLEDs

New ultrafast flexible and transparent memory devices could herald new era of electronics April 1st, 2017

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

Perovskite edges can be tuned for optoelectronic performance: Layered 2D material improves efficiency for solar cells and LEDs March 10th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Chip Technology

'Neuron-reading' nanowires could accelerate development of drugs for neurological diseases April 12th, 2017

Nanometrics to Announce First Quarter Financial Results on May 2, 2017 April 11th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Photonics breakthough paving the way for improved wireless communication systems: The work could bolster the wireless revolution underway with efficiencies several orders of magnitude April 5th, 2017

Quantum Computing

Harris & Harris Group Issues Its Financial Statements as of December 31, 2016, Posts Its Annual Shareholder Letter, And Will Host a Conference Call for Shareholders on Friday, March 17, 2017 March 15th, 2017

Sorting machine for atoms:Researchers at the University of Bonn clear a further hurdle on the path to creating quantum computers February 10th, 2017

First ever blueprint unveiled to construct a large scale quantum computer February 3rd, 2017

Chiral quantum optics: A new research field with bright perspectives January 31st, 2017

Sensors

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

A Sensitive And Dynamic Tactile Sensor Read more from Asian Scientist Magazine at: https://www.asianscientist.com/2017/04/tech/tactile-3d-active-matrix-sensor/ April 18th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

New technology could offer cheaper, faster food testing: Specialized droplets interact with bacteria and can be analyzed using a smartphone April 7th, 2017

Discoveries

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Wood filter removes toxic dye from water April 21st, 2017

Rice crew revved for Nanocar Race: Nanocar creator James Tour and team take on international competition with single-molecule marvel April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Announcements

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

National Conference on Nanomaterials, (NCN-2017) April 21st, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

Energy

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Controlling forces between atoms, molecules, promising for ‘2-D hyperbolic’ materials April 4th, 2017

Photonics/Optics/Lasers

Method improves semiconductor fiber optics, paves way for developing devices April 16th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Photonics breakthough paving the way for improved wireless communication systems: The work could bolster the wireless revolution underway with efficiencies several orders of magnitude April 5th, 2017

Controlling forces between atoms, molecules, promising for ‘2-D hyperbolic’ materials April 4th, 2017

Solar/Photovoltaic

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Controlling forces between atoms, molecules, promising for ‘2-D hyperbolic’ materials April 4th, 2017

Quantum nanoscience

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Quantum simulation technique yields topological soliton state in SSH model January 3rd, 2017

Diamonds are technologists' best friends: Researchers from the Lomonosov Moscow State University have grown needle- and thread-like diamonds and studied their useful properties December 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project