Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Cooling semiconductor by laser light

The experiments themselves are carried out in this vacuum chamber. When the laser light hits the membrane, some of the light is reflected and some is absorbed and leads to a small heating of the membrane. The reflected light is reflected back again via a mirror in the experiment so that the light flies back and forth in this space and forms optical resonator (cavity). Changing the distance between the membrane and the mirror leads to a complex and fascinating interplay between the movement of the membrane, the properties of the semiconductor and the optical resonances and you can control the system so as to cool the temperature of the membrane fluctuations.

Credit: Niels Bohr Institute
The experiments themselves are carried out in this vacuum chamber. When the laser light hits the membrane, some of the light is reflected and some is absorbed and leads to a small heating of the membrane. The reflected light is reflected back again via a mirror in the experiment so that the light flies back and forth in this space and forms optical resonator (cavity). Changing the distance between the membrane and the mirror leads to a complex and fascinating interplay between the movement of the membrane, the properties of the semiconductor and the optical resonances and you can control the system so as to cool the temperature of the membrane fluctuations.

Credit: Niels Bohr Institute

Abstract:
Researchers at the Niels Bohr Institute have combined two worlds - quantum physics and nano physics, and this has led to the discovery of a new method for laser cooling semiconductor membranes. Semiconductors are vital components in solar cells, LEDs and many other electronics, and the efficient cooling of components is important for future quantum computers and ultrasensitive sensors. The new cooling method works quite paradoxically by heating the material! Using lasers, researchers cooled membrane fluctuations to minus 269 degrees C. The results are published in the scientific journal, Nature Physics.

Cooling semiconductor by laser light

Copenhagen, Denmark | Posted on January 23rd, 2012

"In experiments, we have succeeded in achieving a new and efficient cooling of a solid material by using lasers. We have produced a semiconductor membrane with a thickness of 160 nanometers and an unprecedented surface area of 1 by 1 millimeter. In the experiments, we let the membrane interact with the laser light in such a way that its mechanical movements affected the light that hit it. We carefully examined the physics and discovered that a certain oscillation mode of the membrane cooled from room temperature down to minus 269 degrees C, which was a result of the complex and fascinating interplay between the movement of the membrane, the properties of the semiconductor and the optical resonances," explains Koji Usami, associate professor at Quantop at the Niels Bohr Institute.

From gas to solid

Laser cooling of atoms has been practiced for several years in experiments in the quantum optical laboratories of the Quantop research group at the Niels Bohr Institute. Here researchers have cooled gas clouds of cesium atoms down to near absolute zero, minus 273 degrees C, using focused lasers and have created entanglement between two atomic systems. The atomic spin becomes entangled and the two gas clouds have a kind of link, which is due to quantum mechanics. Using quantum optical techniques, they have measured the quantum fluctuations of the atomic spin.

"For some time we have wanted to examine how far you can extend the limits of quantum mechanics - does it also apply to macroscopic materials? It would mean entirely new possibilities for what is called optomechanics, which is the interaction between optical radiation, i.e. light, and a mechanical motion," explains Professor Eugene Polzik, head of the Center of Excellence Quantop at the Niels Bohr Institute at the University of Copenhagen.

But they had to find the right material to work with.

Lucky coincidence

In 2009, Peter Lodahl (who is today a professor and head of the Quantum Photonic research group at the Niels Bohr Institute) gave a lecture at the Niels Bohr Institute, where he showed a special photonic crystal membrane that was made of the semiconducting material gallium arsenide (GaAs). Eugene Polzik immediately thought that this nanomembrane had many advantageous electronic and optical properties and he suggested to Peter Lodahl's group that they use this kind of membrane for experiments with optomechanics. But this required quite specific dimensions and after a year of trying they managed to make a suitable one.

"We managed to produce a nanomembrane that is only 160 nanometers thick and with an area of more than 1 square millimetre. The size is enormous, which no one thought it was possible to produce," explains Assistant Professor Søren Stobbe, who also works at the Niels Bohr Institute.

Basis for new research

Now a foundation had been created for being able to reconcile quantum mechanics with macroscopic materials to explore the optomechanical effects.

Koji Usami explains that in the experiment they shine the laser light onto the nanomembrane in a vacuum chamber. When the laser light hits the semiconductor membrane, some of the light is reflected and the light is reflected back again via a mirror in the experiment so that the light flies back and forth in this space and forms an optical resonator. Some of the light is absorbed by the membrane and releases free electrons. The electrons decay and thereby heat the membrane and this gives a thermal expansion. In this way the distance between the membrane and the mirror is constantly changed in the form of a fluctuation.

"Changing the distance between the membrane and the mirror leads to a complex and fascinating interplay between the movement of the membrane, the properties of the semiconductor and the optical resonances and you can control the system so as to cool the temperature of the membrane fluctuations. This is a new optomechanical mechanism, which is central to the new discovery. The paradox is that even though the membrane as a whole is getting a little bit warmer, the membrane is cooled at a certain oscillation and the cooling can be controlled with laser light. So it is cooling by warming! We managed to cool the membrane fluctuations to minus 269 degrees C", Koji Usami explains.

"The potential of optomechanics could, for example, pave the way for cooling components in quantum computers. Efficient cooling of mechanical fluctuations of semiconducting nanomembranes by means of light could also lead to the development of new sensors for electric current and mechanical forces. Such cooling in some cases could replace expensive cryogenic cooling, which is used today and could result in extremely sensitive sensors that are only limited by quantum fluctuations," says Professor Eugene Polzik.

####

For more information, please click here

Contacts:
Gertie Skaarup

(45) 35-32-53-20

Koji Usami
Associate Professor, Quantop
Niels Bohr Institute
University of Copenhagen
45-3532-5268
45-2829-7487


Eugene Polzi
Professor, Head of Quantop
Niels Bohr Institute
University of Copenhagen
45-3532-5424
45-2338-2045

Copyright © University of Copenhagen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanotech could rid cattle of ticks, with less collateral damage September 1st, 2015

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Display technology/LEDs/SS Lighting/OLEDs

'Quantum dot' technology may help light the future August 19th, 2015

High-precision control of nanoparticles for digital applications August 19th, 2015

Flexible, biodegradable device can generate power from touch (video) August 12th, 2015

New research may enhance display & LED lighting technology: Large-area integration of quantum dots and photonic crystals produce brighter and more efficient light August 9th, 2015

Chip Technology

Nanometrics to Participate in the Citi 2015 Global Technology Conference August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

A little light interaction leaves quantum physicists beaming August 25th, 2015

'Magic' sphere for information transfer: Professor at the Lomonosov Moscow State University made the «magic» sphere for information transfer August 24th, 2015

Quantum Computing

A little light interaction leaves quantum physicists beaming August 25th, 2015

Surprising discoveries about 2-D molybdenum disulfide: Berkeley Lab researchers use award-winning campanile probe on promising semiconductor August 15th, 2015

New optical chip lights up the race for quantum computer August 14th, 2015

Quantum computing advance locates neutral atoms August 12th, 2015

Sensors

Successful boron-doping of graphene nanoribbon August 27th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

High Precision, High Stability XYZ Microscope Stages, with Capacitive Feedback August 18th, 2015

Setting ground rules for nanotechnology research: Two new projects set the stage for nanotechnology research to move into Big Data August 18th, 2015

Discoveries

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Announcements

Nanotech could rid cattle of ticks, with less collateral damage September 1st, 2015

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Energy

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Photonics/Optics/Lasers

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Glitter from silver lights up Alzheimer's dark secrets August 25th, 2015

Quantum diffraction at a breath of nothing: Physicists build stable diffraction structure in atomically thin graphene August 25th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

Solar/Photovoltaic

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Novel nanostructures for efficient long-range energy transport August 21st, 2015

Charge transport in hybrid silicon solar cells August 17th, 2015

Quantum nanoscience

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Seeing quantum motion August 30th, 2015

Quantum diffraction at a breath of nothing: Physicists build stable diffraction structure in atomically thin graphene August 25th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic