Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > ERC Grant for spintronics: Spinning electrons as information carriers

Abstract:
Electrons spin around their own axis, a property that could form the basis of futuristic high-speed, low-cost electronics. Researcher Michel de Jong of the NanoElectronics group (MESA+) plans to base these "spintronics" on organic materials. He has obtained a Starting Grant of 1.5 million from the European Research Council to fund this work.

ERC Grant for spintronics: Spinning electrons as information carriers

The Netherlands | Posted on January 20th, 2012

This is the second major ERC Grant to be awarded to Prof. Wilfred van der Wiel's group. The professor himself obtained a similar European grant in 2009. So this area of research seems to be attracting considerable attention. This new approach may represent a decisive step towards the next generation of electronic components, which will be more compact, faster, and cheaper.

The beauty of an electron's spin is that it responds very rapidly to small magnetic fields. Such external magnetic fields can be used to reverse the direction of spin. In this way, information can be carried by a flow of electrons. For instance, electrons with a left-hand spin could represent a "1", and those with a right-hand spin, a "0". It takes less time to flip the spin direction than it does to switch a current on or off. Accordingly, spintronics could potentially be very fast and extremely compact.

Organic materials

However, this would require a material that combines the characteristics of a semiconductor (such as silicon, the most widely used material in the chip industry) with magnetic properties. Research in this area (including work by Michel de Jong) has already delivered results. However, finding materials with this combination of properties is far from simple. For this reason, Michel de Jong is now hunting for an alternative. He is focusing on semiconductors consisting of carbohydrate chains, in other words, organic materials. "Such materials are already being used in the displays of the latest smart phones. Indeed, they are very much the 'in' thing. I expect it will ultimately be possible to make very cheap electronics from these materials, leading to a wide range of new applications. For instance, if supermarkets want to tag their products with pricing information, then the electronics involved will have to cost next to nothing."

Buckyballs

De Jong has been experimenting with buckyballs (spherical C60 molecules held together by weak bonds) sandwiched between two magnetic materials. "The great advantage of these molecules is that they have very little effect on electron spin. This enables them to store spin information for much longer periods of time than silicon." Depending on the orientation of the magnetic field in the upper and lower layers of magnetic material, electrons with the same direction of spin are either allowed through or held back, as if a valve were being opened or closed. This would make it possible to create sensitive magnetic sensors, for example. The "sandwich" might also form the basis for new electronic components that make use of spin.

"If we are to make truly effective components, we will need a detailed understanding of events at the interface between the magnetic and organic materials. However, this will require improvements in the quality of such interfaces. The current techniques for applying metallic layers to organic layers do not produce good interconnections. The organic material contains cavities that can fill with metal. This results in unpredictable behaviour. Over the next five years we will be seeking to improve the manufacturing process. This will help us to understand what exactly happens at the interface. I propose to use part of the ERC Grant for this purpose. It will enable me to take on two PhD students and a postdoctoral researcher."

####

For more information, please click here

Contacts:
Wiebe van der Veen
tel. +31-(0)53-4894244

Copyright © University of Twente

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Quantum physics just got less complicated December 22nd, 2014

Enzyme Biosensor Used for Rapid Measurement of Drug December 22nd, 2014

Universality of charge order in cuprate superconductors: Charge order has been established in another class of cuprate superconductors, highlighting the importance of the phenomenon as a general property of these high-Tc materials December 22nd, 2014

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Spintronics

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Researchers create & control spin waves, lifting prospects for enhanced info processing November 17th, 2014

Nanotubes/Buckyballs

A sponge-like molecular cage for purification of fullerenes December 15th, 2014

'Trojan horse' proteins used to target hard-to-reach cancers: Scientists at Brunel University London have found a way of targeting hard-to-reach cancers and degenerative diseases using nanoparticles, but without causing the damaging side effects the treatment normally brings December 11th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Green meets nano: Scientists at TU Darmstadt create multifunctional nanotubes using nontoxic materials December 3rd, 2014

Announcements

Quantum physics just got less complicated December 22nd, 2014

Enzyme Biosensor Used for Rapid Measurement of Drug December 22nd, 2014

Universality of charge order in cuprate superconductors: Charge order has been established in another class of cuprate superconductors, highlighting the importance of the phenomenon as a general property of these high-Tc materials December 22nd, 2014

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE