Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > ERC Grant for spintronics: Spinning electrons as information carriers

Abstract:
Electrons spin around their own axis, a property that could form the basis of futuristic high-speed, low-cost electronics. Researcher Michel de Jong of the NanoElectronics group (MESA+) plans to base these "spintronics" on organic materials. He has obtained a Starting Grant of Ä1.5 million from the European Research Council to fund this work.

ERC Grant for spintronics: Spinning electrons as information carriers

The Netherlands | Posted on January 20th, 2012

This is the second major ERC Grant to be awarded to Prof. Wilfred van der Wiel's group. The professor himself obtained a similar European grant in 2009. So this area of research seems to be attracting considerable attention. This new approach may represent a decisive step towards the next generation of electronic components, which will be more compact, faster, and cheaper.

The beauty of an electron's spin is that it responds very rapidly to small magnetic fields. Such external magnetic fields can be used to reverse the direction of spin. In this way, information can be carried by a flow of electrons. For instance, electrons with a left-hand spin could represent a "1", and those with a right-hand spin, a "0". It takes less time to flip the spin direction than it does to switch a current on or off. Accordingly, spintronics could potentially be very fast and extremely compact.

Organic materials

However, this would require a material that combines the characteristics of a semiconductor (such as silicon, the most widely used material in the chip industry) with magnetic properties. Research in this area (including work by Michel de Jong) has already delivered results. However, finding materials with this combination of properties is far from simple. For this reason, Michel de Jong is now hunting for an alternative. He is focusing on semiconductors consisting of carbohydrate chains, in other words, organic materials. "Such materials are already being used in the displays of the latest smart phones. Indeed, they are very much the 'in' thing. I expect it will ultimately be possible to make very cheap electronics from these materials, leading to a wide range of new applications. For instance, if supermarkets want to tag their products with pricing information, then the electronics involved will have to cost next to nothing."

Buckyballs

De Jong has been experimenting with buckyballs (spherical C60 molecules held together by weak bonds) sandwiched between two magnetic materials. "The great advantage of these molecules is that they have very little effect on electron spin. This enables them to store spin information for much longer periods of time than silicon." Depending on the orientation of the magnetic field in the upper and lower layers of magnetic material, electrons with the same direction of spin are either allowed through or held back, as if a valve were being opened or closed. This would make it possible to create sensitive magnetic sensors, for example. The "sandwich" might also form the basis for new electronic components that make use of spin.

"If we are to make truly effective components, we will need a detailed understanding of events at the interface between the magnetic and organic materials. However, this will require improvements in the quality of such interfaces. The current techniques for applying metallic layers to organic layers do not produce good interconnections. The organic material contains cavities that can fill with metal. This results in unpredictable behaviour. Over the next five years we will be seeking to improve the manufacturing process. This will help us to understand what exactly happens at the interface. I propose to use part of the ERC Grant for this purpose. It will enable me to take on two PhD students and a postdoctoral researcher."

####

For more information, please click here

Contacts:
Wiebe van der Veen
tel. +31-(0)53-4894244

Copyright © University of Twente

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Spintronics

University of Illinois study advances limits for ultrafast nano-devices July 10th, 2014

Harnessing magnetic vortices for making nanoscale antennas: Scientists explore ways to synchronize spins for more powerful nanoscale electronic devices April 30th, 2014

Could Diamonds Be A Computerís Best Friend? Landmark experiment reveals the precious gemís potential in computing March 24th, 2014

Spintronic Thermoelectric Power Generators: A step towards energy efficient electronic devices March 21st, 2014

Nanotubes/Buckyballs

SouthWest NanoTechnologies Names NanoSperse as A SWeNT Certified Compounder July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

University of Houston researchers create new method to draw molecules from live cells: Technique using magnetic nanomaterials offers promise for diagnosis, gene therapy July 17th, 2014

Announcements

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE