Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New microtweezers may build tiny 'MEMS' structures

Purdue researchers have created a new type of microtweezers capable of manipulating objects to build tiny structures, print coatings to make advanced sensors, and grab and position live stem cell spheres for research. (Birck Nanotechnology Center photo)
Purdue researchers have created a new type of microtweezers capable of manipulating objects to build tiny structures, print coatings to make advanced sensors, and grab and position live stem cell spheres for research.

(Birck Nanotechnology Center photo)

Abstract:
A Compact Manually Actuated Micromanipulator

Bin-Da Chan, Farrukh Mateen, Chun-Li Chang, Kutay Icoz,
and Cagri A. Savran

This letter reports a compact, versatile, and user-friendly micromanipulator that uses an elastically deformable silicon microtweezer to grab microentities and a micrometer head for rotational manual actuation. The micro-/macroconnection is achieved via a graphite interface that results in a compact and portable design and placement on most translation stages. The system, which can operate in both air and liquid and transport objects between the two media, has a wide range of applications. We demonstrate but a few of them, including in situ construction of microstructures in 3-D, isolation and placement of individual microparticles on designated spots on sensors, on-demand microcontact printing of microparticles, and manipulation of live stem cell spheres. [2011-0237] Index Terms - Microgripper, micromanipulator, microstamping, microtweezer.

New microtweezers may build tiny 'MEMS' structures

West Lafayette, IN | Posted on January 17th, 2012

Researchers have created new "microtweezers" capable of manipulating objects to build tiny structures, print coatings to make advanced sensors, and grab and position live stem cell spheres for research.

The microtweezers might be used to assemble structures in microelectromechanical systems, or MEMS, which contain tiny moving parts. MEMS accelerometers and gyroscopes currently are being used in commercial products. A wider variety of MEMS devices, however, could be produced through a manufacturing technology that assembles components like microscopic Lego pieces moved individually into place with microtweezers, said Cagri Savran (pronounced Chary Savran), an associate professor of mechanical engineering at Purdue University.

"We've shown how this might be accomplished easily, using new compact and user-friendly microtweezers to assemble polystyrene spheres into three-dimensional shapes," he said.

Research findings were detailed in a paper that appeared online in December in the Journal of Microelectromechanical Systems, or JMEMS. The paper was written by Savran, mechanical engineering graduate students Bin-Da Chan and Farrukh Mateen, electrical and computer engineering graduate student Chun-Li Chang, and biomedical engineering doctoral student Kutay Icoz.

The new tool contains three main parts: a thimble knob from a standard micrometer, a two-pronged tweezer made from silicon, and a "graphite interface," which converts the turning motion of the thimble knob into a pulling-and-pushing action to open and close the tweezer prongs. No electrical power sources are needed, increasing the potential for practical applications. Other types of microtweezers have been developed and are being used in research. However, the new design is simpler both to manufacture and operate, Savran said.

The design contains a one-piece "compliant structure," which is springy like a bobby pin or a paperclip. Most other microtweezers require features such as hinges or components that move through heat, magnetism or electricity, complex designs that are expensive to manufacture and relatively difficult to operate in various media, he said.

The tweezers make it feasible to precisely isolate individual stem cell spheres from culture media and to position them elsewhere. Currently, these spheres are analyzed in large groups, but microtweezers could provide an easy way to study them by individually selecting and placing them onto analytical devices and sensors.

"We currently are working to weigh single micro particles, individually selected among many others, which is important because precise measurements of an object's mass reveal key traits, making it possible to identify composition and other characteristics," Savran said. "This will now be as easy as selecting and weighing a single melon out of many melons in a supermarket."

That work is a collaboration with the research group of Timothy Ratliff, the Robert Wallace Miller Director of Purdue's Center for Cancer Research.

The microtweezers also could facilitate the precision printing of chemical or protein dots onto "microcantilevers," strips of silicon that resemble tiny diving boards. The microcantilevers can be "functionalized," or coated with certain chemicals or proteins that attract specific molecules and materials. Because they vibrate at different frequencies depending on what sticks to the surface, they are used to detect chemicals in the air and water.

Generally, microcantilevers are functionalized to detect one type of substance by exposing them to fluids, Savran said. However, being able to microprint a sequence of precisely placed dots of different chemicals on each cantilever could make it possible to functionalize a device to detect several substances at once. Such a sensing technology also would require a smaller sample size than conventional diagnostic technologies, making it especially practical.

The new microtweezers are designed to be attached easily to "translation stages" currently used in research. These stages are essentially platforms on which to mount specimens for viewing and manipulating. Unlike most other microtweezers, the new device is highly compact and portable and can be easily detached from a platform and brought to another lab while still holding a micro-size object for study, Savran said.

The two-pronged tweezer is micromachined in a laboratory called a "clean room" with the same techniques used to create microcircuits and computer chips. The research was based at the Birck Nanotechnology Center in Purdue's Discovery Park.
Purdue has filed for a provisional patent on the design.

####

For more information, please click here

Contacts:
Writer:
Emil Venere
765-494-4709


Source:
Cagri A. Savran
765 494-8601

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

MEMS

NIST illuminates transfer of nanoscale motion through microscale machine September 14th, 2016

STMicroelectronics Earns MEMS Manufacturer of the Year Award August 1st, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

New research unveils graphene 'moth eyes' to power future smart technologies: New ultra-thin, patterned graphene sheets will be essential in designing future technologies such as 'smart wallpaper' and Internet-of-things applications March 1st, 2016

Nanomedicine

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

BBI Solutions launches innovative conjugate blocking technology that enhances signal intensity for lateral flow immunoassays September 20th, 2016

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

Sensors

Chains of nanogold – forged with atomic precision September 23rd, 2016

Speedy bacteria detector could help prevent foodborne illnesses September 21st, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

Discoveries

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Speedy bacteria detector could help prevent foodborne illnesses September 21st, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Announcements

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Tools

Oxford Instruments is ‘Bringing the Nanoworld Together’ in India once again - 22 - 23 November 2016 | IISc Bangalore September 21st, 2016

Bruker Introduces Complete Commercial AFM-Based SECM Solution: PeakForce SECM Mode Enables Previously Unobtainable Electrochemical Information September 20th, 2016

Oxford Instruments Asylum Research Announces New SurfRider Econo Board Probes for Routine AFM Measurements September 19th, 2016

Electron beam microscope directly writes nanoscale features in liquid with metal ink September 16th, 2016

Patents/IP/Tech Transfer/Licensing

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

For first time, carbon nanotube transistors outperform silicon September 8th, 2016

Industrial Nanotech, Inc. Provides Shareholder Update August 22nd, 2016

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

Nanobiotechnology

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

BBI Solutions launches innovative conjugate blocking technology that enhances signal intensity for lateral flow immunoassays September 20th, 2016

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

Printing/Lithography/Inkjet/Inks/Bio-printing

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

Tailored probes for atomic force microscopes: 3-D laser lithography enhances microscope for studying nanostructures in biology and engineering/ publication in Applied Physics Letters August 11th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic