Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UAlbany NanoCollege & Applied DNA Sciences Partner on Nanochip Anti-Counterfeiting Program Collaborative Research Will Advance DNA Deposition Technologies Targeting Over $300B Market for 'Nanosecurity' Applications in Nanoelectronics, Aerospace and Defense

Abstract:
The College of Nanoscale Science and Engineering (CNSE) of the University at Albany and Long Island-based Applied DNA Sciences, Inc. (OTCBB:APDN) today announced a partnership to enable nanotechnology-driven innovations that would play a critical role in preventing the counterfeiting of computer chips - a collaboration in the groundbreaking area of "nanosecurity" that initially targets the $20 billion defense industry chip market and has the potential to impact nanoelectronics and aerospace markets well in excess of $300 billion.

UAlbany NanoCollege & Applied DNA Sciences Partner on Nanochip Anti-Counterfeiting Program Collaborative Research Will Advance DNA Deposition Technologies Targeting Over $300B Market for 'Nanosecurity' Applications in Nanoelectronics, Aerospace and Defense

Albany, NY and Stony Brook, NY | Posted on January 17th, 2012

Through joint research and development at CNSE's Albany NanoTech Complex, CNSE and APDN, will accelerate the development of APDN's SigNature DNA® product. This will include the integration of new methods for DNA deposition on nanoelectronics wafers and computer chips both prior to, and including, final packaging to ensure the integrity and security of processed wafers.

The partnership between CNSE and APDN will support research, development and deployment of authentication protocols and procedures in established process flows, including CMOS, MEMS, photonics, and other device derivatives, as well as advanced packaging technologies, such as 3-dimensional wafer-to-wafer and die-on-wafer. When realized, these advances would enable comprehensive supply chain protection well into the foreseeable future.

The collaboration comes on the heels of the enacting of the 2012 National Defense Authorization Act. This law will significantly strengthen protections against the wave of counterfeit electronic parts coming into the defense supply system by requiring that military suppliers and government agencies create and implement counterfeit detection and avoidance systems, among many other strict anti-counterfeiting provisions. These new mandates could be enabled through a CNSE-APDN partnership.

And while the spotlight is justifiably on protecting the defense supply chain, the private sector would also reap significant and immediate rewards from CNSE-APDN efforts.

"It is critical that nanotechnology research and development is done right here in the U.S.," said U.S. Senator Kirsten Gillibrand. "The partnership between the College of Nanoscale Science and Engineering and Applied DNA Sciences on Long Island will help keep our country competitive and combat nanochip counterfeiting."

Dr. James A. Hayward, President and CEO of Applied DNA Sciences, said, "With this partnership between the UAlbany NanoCollege and APDN, we create the field of ‘nanosecurity.' Both entities contribute leading-edge technology and proven success in its commercialization. We are confident of results and in our capacity for near-term deployment."

Dean Fuleihan, CNSE Executive Vice President for Strategic Partnerships, said, "The UAlbany NanoCollege is delighted to enter into this partnership with Applied DNA Sciences to enable innovative anti-counterfeiting technology that is vital to protecting American troops and U.S. military interests, both at home and abroad. This collaboration will accelerate research, development and commercialization to ensure the security and integrity of computer chips that drive our nation's most advanced weaponry and intelligence systems, and further demonstrates the success of public-private partnerships in positioning CNSE and New York state as a hub for 21st century military technologies driven by nanotechnology know how."

The APDN system marks computer chips with uncopyable DNA codes, which can then be used to authenticate the originality of chips anywhere along the supply chain. The APDN technology can not only enhance inspection, but also goes much further to forensically verify originality, using botanical DNA to create "tags" to mark the product in a unique way.

As part of the collaboration, CNSE and APDN intend to establish a joint technology development partnership model - engaging nanoelectronics device fabricators, leading aerospace and defense system integration companies, and state and federal government agencies - to further advance the implementation of counterfeit protection measures. CNSE recently submitted a technology development proposal in partnership with APDN and other leading nanoelectronics companies in response to a Broad Agency Announcement issued by the Intelligence Advanced Research Projects Activity (IARPA), which invests in technology programs that have the potential to provide our nation with an overwhelming intelligence advantage over future adversaries.

####

About UAlbany NanoCollege
The UAlbany CNSE is the first college in the world dedicated to education, research, development and deployment in the emerging disciplines of nanoscience, nanoengineering, nanobioscience and nanoeconomics. With more than $14 billon in high-tech investments, CNSE represents the world’s most advanced university-driven research enterprise, offering students a one-of-a-kind academic experience and providing over 300 corporate partners with access to an unmatched ecosystem for leading-edge R&D and commercialization of nanoelectronics and nanotechnology innovations. CNSE’s footprint spans upstate New York, including its Albany NanoTech Complex, an 800,000-square-foot megaplex with the only fully-integrated, 300mm wafer, computer chip pilot prototyping and demonstration line within 85,000 square feet of Class 1 capable cleanrooms. More than 2,600 scientists, researchers, engineers, students and faculty work here, from companies including IBM, Intel, GlobalFoundries, SEMATECH, Samsung, TSMC, Toshiba, Applied Materials, Tokyo Electron, ASML and Novellus Systems. An expansion now underway, part of which will house the world’s first Global 450mm Consortium, will add nearly 500,000 square feet of next-generation infrastructure, an additional 50,000 square feet of Class 1 capable cleanrooms, and more than 1,000 scientists, researchers and engineers from CNSE and global corporations. In addition, CNSE’s Solar Energy Development Center in Halfmoon provides a prototyping and demonstration line for next-generation CIGS thin-film solar cells. CNSE’s Smart System Technology and Commercialization Center of Excellence (STC) in Rochester offers state-of-the-art capabilities for MEMS fabrication and packaging. CNSE also co-founded and manages operations at the Computer Chip Commercialization Center at SUNYIT in Utica and is a co-founder of the Nanotechnology Innovation and Commercialization Excelerator in Syracuse. For information, visit www.cnse.albany.edu.

APDN sells patent-protected DNA security solutions to protect products, brands and intellectual property from counterfeiting and diversion. SigNature DNA is a botanical mark used to authenticate products in a unique manner that essentially cannot be copied, and provide a forensic chain of evidence that can be used to prosecute perpetrators. To learn more, go to www.adnas.com where APDN routinely posts all press releases.

The statements made by APDN may be forward-looking in nature. Forward-looking statements describe APDN's future plans, projections, strategies and expectations, and are based on assumptions and involve a number of risks and uncertainties, many of which are beyond the control of APDN. Actual results could differ materially from those projected due to our short operating history, limited financial resources, limited market acceptance, market competition and various other factors detailed from time to time in APDN's SEC reports and filings, including our Annual Report on Form 10-K, filed on December 8, 2011 and our subsequent quarterly reports on Form 10-Q. APDN undertakes no obligation to update publicly any forward-looking statements to reflect new information, events or circumstances after the date hereof to reflect the occurrence of unanticipated events.

For more information, please click here

Contacts:
Steve Janack
Vice President
Marketing and Communications
CNSE
(518) 956-7322


Mitchell Miller
Director of Communications
Applied DNA Sciences, Inc.
(917) 573-3373

Copyright © UAlbany NanoCollege

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

World's smallest spirals could guard against identity theft June 4th, 2015

New sensing tech could help detect diseases, fraudulent art, chemical weapons June 1st, 2015

Nanotech Secures Additional Patents in Advanced Security Features: New patented features gain attention from the banknote industry May 30th, 2015

Better sensors for medical imaging, contraband detection: Magnetic-field detector is 1,000 times more efficient than its predecessors April 6th, 2015

Academic/Education

Pakistani Students Who Survived Terror Attack to Attend Weeklong “NanoDiscovery Institute” at SUNY Poly CNSE in Albany July 29th, 2015

Deben reports on the use of their CT500 in the X-ray microtomography laboratory at La Trobe University, Melbourne, Australia July 22nd, 2015

JPK reports on the use of SPM in the Messersmith Group at UC Berkeley looking at biologically inspired polymer adhesives. July 21st, 2015

Renishaw adds Raman analysis to Scanning Electron Microscopy at the University of Sydney, Australia July 9th, 2015

Chip Technology

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Nanometrics Announces Upcoming Investor Events July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Nanoelectronics

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

ORNL researchers make scalable arrays of 'building blocks' for ultrathin electronics July 22nd, 2015

An easy, scalable and direct method for synthesizing graphene in silicon microelectronics: Korean researchers grow 4-inch diameter, high-quality, multi-layer graphene on desired silicon substrates, an important step for harnessing graphene in commercial silicon microelectronics July 21st, 2015

Announcements

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Military

Smart hydrogel coating creates 'stick-slip' control of capillary action July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Aerospace/Space

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Global Aerospace Applications Nanocoatings Industry 2015: Acute Market Reports July 21st, 2015

NASA-Funded Study Reduces Cost of Human Missions to Moon and Mars by Factor of Ten July 20th, 2015

University of Puerto Rico and NASA in the news – XEI reports July 16th, 2015

Alliances/Trade associations/Partnerships/Distributorships

Liquipel Debuts Eyesight-Saving ION-Glass Blue Light Protection for iPhones and Androids at RadioShack Stores Nationwide: Liquipel's Unique Protective Screen, Available at RadioShack, Cuts Harmful Blue Light Implicated in Macular Degeneration by 10x July 28th, 2015

Dais Analytic's Business Affiliate in China Announces Ten-Year Strategic Energy Efficiency Business Arrangement With COFCO: Dais Beijing to Perform Feasibility Study on Over 80 Buildings to Improve Efficiencies as Part of Overall Hotel Energy-Savings Project July 23rd, 2015

Leti and Diabeloop Project Aims at Developing Artificial Pancreas for Diabetes Treatment July 22nd, 2015

Imec and Panasonic Demonstrate Breakthrough RRAM Cell July 16th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project