Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Baolab announces evaluation kits for its award winning NanoEMS MEMS - available to customers

Abstract:
Baolab Microsystems has announced that it will have evaluation kits of its recently announced 3D NanoCompass™ available at the end of February 2012. This electronic 3-axis CMOS MEMS NanoCompass technology uses Baolab's patented, award winning NanoEMS™ technology to create nanoscale MEMS (Micro Electro Mechanical Systems) within the standard metal structure of a high volume manufactured CMOS wafer.

Baolab announces evaluation kits for its award winning NanoEMS MEMS - available to customers

Barcelona, Spain | Posted on January 16th, 2012

"We are now producing NanoEMS sensors in volume in a standard CMOS production line." said Dave Doyle, Baolab's CEO. "The move from lab to fab is a significant milestone for the company, proving that our innovative technology is reliable, scalable and repeatable. This was the critical stage that our customers have been waiting for. NanoEMS makes it much easier and more cost effective to integrate MEMS sensors with microcontrollers and associated electronics all on the same chip in the same CMOS production line. This is the breakthrough that will enable high volume, consumer electronics products to have intelligent sensors, meeting the increasing demand for smarter, more aware devices."

NanoEMS technology not only offers significant cost reductions in motion MEMS sensors but Baolab envisages the possibility for NanoEMS structures to be easily incorporated into ASICs for applications such as RF Antennas, RF switches, Near Field Communications and Automotive. Possible areas that Baolab and its customers are investigating are:-

Vibrating antennas

These overcome the limitations of classic (static) antennas such as compact superdirective/superesolution antennas/lenses that require phase shifters and gains with an accuracy not currently realistic. Vibrating antennas make these feasible along with spatial multiplexing communications for mobile telecoms and internet.

Thermo-magnetic RF switches & antennas

By exploiting the low value of the Curie temperature of Nickel, it is possible to build RF switches, filters and reconfigurable antennas. This creates a novel category of reconfigurable RF MEMS components which are highly reliable, since there are no moving parts, achieving compelling RF specs, low power consumption and low cost thanks to CMOS processing.

Modal switches

This novel topology enables compelling specifications for RF switches with low-capacitance ratio and high isolation, using low cost, low resistivity CMOS substrates. The principle is based on transferring power from the different transmission modes in a transmission line, using reconfigurable MEMS loads to balance and unbalance the line.

Integrated passives: inductors, transformers, capacitors

Integrated inductors with a helicoidal shape typical of off-chip inductors, offer reduced losses (higher Q) and smaller parasitic capacitance (higher resonant frequency). It is also possible to create transformers with any winding ratio.

Integrated capacitors for low frequency applications, especially power, where the tangent capacitance is used instead of the traditional approach using secant capacitance. When capacitors are used in voltage regulators, only a small fraction of the charge stored in the capacitor is typically used to regulate the voltage. This kind of capacitor allows a higher percentage of the stored charge to be used to regulate the voltage, which makes it possible to implement smaller, integrated filters and regulators, with superior performance.

RF filters

The small feature size of CMOS processing makes it is possible to implement RF MEMS filters up to the GHz band required for cell phone communications and significantly increase the electromechanical coupling. Current MEMS RF mechanical filters have a problem with very low electromechanical coupling, which means low sensitivity, that they try to offset by means of using a very high voltage but with limited success.

Power converters

NanoEMS™ MEMS enable integrated charge pumps and power supplies, which are lower in cost, more compact and more efficient.

####

About Baolab Microsystems
Baolab has developed an innovative technology called NanoEMS™ that enables MEMS to be created inside the CMOS wafer using standard manufacturing techniques. This enables them to be made an order of magnitude smaller than existing techniques of building MEMS on the surface of the wafer and also at a fraction of the cost. Privately owned, Baolab is based in Barcelona, Spain.

To learn more about Boalab's NanoEMS technology and products, visit www.baolab.com/compass.htm or email

For more information, please click here

Contacts:
Nigel Robson
Vortex PR
+44 1481 233080


Tel.: +34-93-394-17-70

Copyright © Baolab Microsystems

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

FEI Celebrates Shipment of 1,000th Helios DualBeam System: FEI’s Helios Family has lead the DualBeam technology race and is widely used across the semiconductor, materials science, life sciences and oil & gas industries August 31st, 2016

Colors from darkness: Researchers develop alternative approach to quantum computing August 31st, 2016

Diamonds and quantum information processing on the nano scale August 31st, 2016

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

MEMS

STMicroelectronics Earns MEMS Manufacturer of the Year Award August 1st, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

New research unveils graphene 'moth eyes' to power future smart technologies: New ultra-thin, patterned graphene sheets will be essential in designing future technologies such as 'smart wallpaper' and Internet-of-things applications March 1st, 2016

Vesper Collaborates with GLOBALFOUNDRIES to Deliver First Piezoelectric MEMS Microphones: Acoustic sensing company works with top foundry to support mass-market consumer products January 21st, 2016

Chip Technology

Colors from darkness: Researchers develop alternative approach to quantum computing August 31st, 2016

Diamonds and quantum information processing on the nano scale August 31st, 2016

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

Sensors

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Announcements

FEI Celebrates Shipment of 1,000th Helios DualBeam System: FEI’s Helios Family has lead the DualBeam technology race and is widely used across the semiconductor, materials science, life sciences and oil & gas industries August 31st, 2016

Colors from darkness: Researchers develop alternative approach to quantum computing August 31st, 2016

Diamonds and quantum information processing on the nano scale August 31st, 2016

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Patents/IP/Tech Transfer/Licensing

Industrial Nanotech, Inc. Provides Shareholder Update August 22nd, 2016

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic