Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Iranian Scientists Introduce Nanocomposite for Deactivation of E.Coli Bacterium

Abstract:
Iranian researchers at Islamic Azad University successfully introduced ZnO/SnO2 nanocomposite catalyst with molar ratio of 2:1 with higher performance than single films of ZnO and SnO2 by using drop method to deactivate E.Coli bacterium.

Iranian Scientists Introduce Nanocomposite for Deactivation of E.Coli Bacterium

Tehran, Iran | Posted on January 16th, 2012

"Our long-term purpose is to study the possibility of the removal of the microbial pollution, firstly by obtaining acceptable results on standard bacteria (with less resistance), and then by optimizing catalytic systems that are used in the elimination of hospital bacteria (with higher resistance)," Dr. Nasrin Talebiyan, Assistant Professor of Shahreza Branch of Islamic Azad University, told INIC.

According to Dr. Talebiyan, the activities carried out in this research are as follows:

o Preparation of film catalysts of ZnO / SnO2 nanocomposite and single ZnO and SnO2 thin layers through sol-gel method;
o Identification of catalysts through XRD, SEM, and UV-vis methods;
o Studying the antibacterial properties of catalysts in order to deactivate E Coli bacterium by using drop method in the presence and absence of the radiation of ultraviolet light;
o Studying the effects of parameters such as radiation time, type of photocatalyst, UV radiation, and various bacteriological methods in the evaluation of antibacterial activity.

According to the results of the research, ZnO/SnO2 nanocomposite catalyst with a mole ratio of 2:1 has the best performance, and the drop method was chosen as the best method for the deactivation of E Coli bacterium.

Explaining about the research, Talebiyan said, "One of highly important characteristics of the catalytic systems is that they do not need the radiation of UV. In addition, experimental data prove the antibacterial activity of the system in thin layer films samples. The samples also have a highly good repeatability."

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Chemistry

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Sandia develops math techniques to improve computational efficiency in quantum chemistry May 5th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Nanomedicine

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Discoveries

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Announcements

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Nanobiotechnology

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project