Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nano Research Could Impact Flexible Electronic Devices

North Dakota State University

Research by a team led by Dr. Erik Hobbie, North Dakota State University, Fargo, suggests that thin films from metallic single-wall carbon nanotubes provide higher conductivity and better durability. The research results, published in ACS Nano, could one day impact flexible electronics such as solar cells and wearable sensors.
North Dakota State University

Research by a team led by Dr. Erik Hobbie, North Dakota State University, Fargo, suggests that thin films from metallic single-wall carbon nanotubes provide higher conductivity and better durability. The research results, published in ACS Nano, could one day impact flexible electronics such as solar cells and wearable sensors.

Abstract:
A discovery by a research team at North Dakota State University, Fargo, and the National Institute of Standards and Technology (NIST), shows that the flexibility and durability of carbon nanotube films and coatings are intimately linked to their electronic properties. The research could one day impact flexible electronic devices such as solar cells and wearable sensors. The research also provided a promising young high school student the chance to work in the lab with world-class scientists, jumpstarting her potential scientific career.

Nano Research Could Impact Flexible Electronic Devices

Fargo, ND | Posted on January 13th, 2012

The NDSU/NIST research team, led by Erik Hobbie, Ph.D., is working to determine why thin films made from metallic single-wall carbon nanotubes are superior for potential applications that demand both electronic performance and mechanical durability. "One simple reason is that the metallic nanotubes tend to transport charge more easily when they touch each other," said Hobbie. "But another less obvious reason has to do with how much the films can flex without changing their structure at very small scales."

Results from the study appear in "Electronic Durability of Flexible Transparent Films from Type-Specific Single-Wall Carbon Nanotubes," published in ACS Nano.

The team includes NDSU graduate student John M. Harris; postdoctoral researcher Ganjigunte R. Swathi Iyer; Anna K. Bernhardt, North Dakota Governor's School attendee; and NIST researchers Ji Yeon Huh, Steven D. Hudson and Jeffrey A. Fagan.

There is great interest in using carbon nanotube films and coatings as flexible transparent electrodes in electronic devices such as solar cells. "Our research demonstrates that the flexibility and durability of these films are intimately linked to their electronic properties," said Hobbie. "This is a very new idea, so hopefully, it will generate a new series of studies and questions focused on the exact origins and consequences of this effect."

Such research could potentially result in material that reduces solar cell costs, and leads to the ability to use them in clothing or foldable electronics. Electronic devices currently on the market that require transparent electrodes, like touch screens and solar cells, typically use indium tin oxide, an increasingly expensive material. "It is also very brittle," said Hobbie, "implying that it cannot be used in devices that require mechanical flexibility like wearable or foldable electronics."

Single-wall carbon nanotubes show significant promise as transparent conductive coatings with outstanding electronic, mechanical and optical properties. "A particularly attractive feature of these films is that the physical properties can be tuned through the addition or subtraction of a relatively small number of nanotubes," said Hobbie. "Thin films made from such materials hold tremendous potential for flexible electronics applications, including the replacement of indium tin oxide in liquid crystal displays and photovoltaic devices."

Thin films made from metallic single-wall carbon nanotubes show better durability as flexible transparent conductive coatings, which the researchers attribute to a combination of superior mechanical performance and higher interfacial conductivity. The research team found significant differences in the electronic manifestations of thin-film wrinkling, depending on the electronic type of the nanotubes, and examined the underlying mechanisms.

The results of this study suggest that the metallic films make better flexible transparent conductive coatings; they have higher conductivity and are more durable. "Our results are relevant to a number of ongoing efforts in transparent conducting films and flexible electronic devices," said Hobbie.

The research was supported by the National Science Foundation through CMMI-0969155 and the U.S. Department of Energy through DE-FB36-08GO88160.

The opportunity to work on such research was new to Anna Bernhardt, a high school junior from a town of 1,000 people in western North Dakota. She was among 66 of the most academically driven high school sophomores and juniors who attended a six-week intensive summer residential program on the NDSU campus for scholastically motivated students in the state.

Students receive concentrated instruction from 40 NDSU faculty through discussion groups, labs, field trips and other activities. The state of North Dakota funds the cost of participation for North Dakota students who are accepted into the program. It's available free to public school students, while private and homeschool students selected for the program can make arrangements to attend for free through their local public school district.

While it is unusual for a young student to be involved in nanotechnology research at this level, it presented an opportunity for everyone involved. Bernhardt prepared single-wall carbon nanotube samples and participated in testing of the samples. "The experience of working in a research setting has helped me to decide that I would love to do more research in the future," said the young scientist. "The biggest benefit of working in the lab was getting a taste of the true research experience. Without North Dakota's Governor's School, I would never have been able to have this experience and surely wouldn't be so certain that I would like to do more research in the future."

Students who participate in the residential summer science program at NDSU also present their research in poster presentations. "As a young student interested in science and engineering, it gives her a great start on her career," said Dr. Hobbie. When she graduates from high school, Bernhardt plans to major in physics.

About NDSU's Materials and Nanotechnology Graduate Program

Dr. Erik Hobbie is a professor in the Department of Physics and in the Department of Coatings and Polymeric Materials at NDSU. He also serves as director of NDSU's Materials and Nanotechnology graduate program that offers students a unique opportunity to participate in interdisciplinary research. NDSU faculty from chemistry, civil engineering, coatings and polymeric materials, mechanical engineering, and physics contribute to the Materials and Nanotechnology program. Researchers in the program also collaborate with the Center for Nanoscale Science and Engineering at NDSU. Hobbie previously served as a senior scientist at the National Institute of Standards and Technology. He received his Ph.D. in physics from the University of Minnesota. www.ndsu.edu/materials_nanotechnology/

####

About North Dakota State University
North Dakota State University, Fargo, is notably listed among the nation’s top 108 public and private universities in the Carnegie Commission on Higher Education’s elite category of “Research Universities/Very High Research Activity.” As a student-focused, land grant, research institution with more than 14,000 students, NDSU is listed in the top 40 research universities in the U.S. without a medical school, based on research expenditures reported to the National Science Foundation. At the 55-acre NDSU Research & Technology Park, faculty, staff and students work with private sector researchers on leading-edge projects. www.ndsu.edu/research

About the North Dakota’s Governor’s School

Established in 1990, the North Dakota Governor’s School is an intensive six-week summer residential program in science, mathematics, English, business, and performing or visual arts, for qualified North Dakota high school sophomores or juniors. Located on the campus of North Dakota State University, Fargo, the science portion of the program pairs students with a mentor scientist and a research group to further develop laboratory skills and quantitative data techniques. The state of North Dakota funds the program, available at no cost to qualified North Dakota students selected to participate. www.ndsu.edu/govschool/

For more information, please click here

Contacts:
Dr. Erik Hobbie
701.231.7049


Carol Renner
701.231.5174

Copyright © North Dakota State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Thin films

New Compact SIMS at 61st AVS | Visit us on Booth 311 October 28th, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Flexible Electronics

Crumpled graphene could provide an unconventional energy storage: Two-dimensional carbon “paper” can form stretchable supercapacitors to power flexible electronic devices October 4th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

'Greener,' low-cost transistor heralds advance in flexible electronics September 24th, 2014

Future flexible electronics based on carbon nanotubes: Study in Applied Physics Letters show how to improve nanotube transistor and circuit performance with fluoropolymers September 23rd, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Electronic skin' could improve early breast cancer detection October 29th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Academic/Education

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Raytheon, UMass Lowell open on-campus research institute: Industry leader’s researchers to collaborate with faculty, students to move key technologies forward through first-of-its-kind partnership October 11th, 2014

SUNY Colleges of Nanoscale Science and Engineering and National Institute for Occupational Safety and Health Announce Expanded Partnership October 2nd, 2014

Chip Technology

Sussex physicists find simple solution for quantum technology challenge October 28th, 2014

Watching the hidden life of materials: Ultrafast electron diffraction experiments open a new window on the microscopic world October 27th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Nanotubes/Buckyballs

Tiny carbon nanotube pores make big impact October 29th, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Sensors

Tiny carbon nanotube pores make big impact October 29th, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Journal Nanotechnology Progress International (JONPI), 2014, Volume 5, Issue 1, pp 1-24 October 22nd, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Announcements

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Energy

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

New Compact SIMS at 61st AVS | Visit us on Booth 311 October 28th, 2014

New evidence for an exotic, predicted superconducting state October 27th, 2014

Solar/Photovoltaic

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

Dyesol Signs Letter of Intent with Tata Steel October 13th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE