Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Future development of smaller and more powerful electronics requires the understanding of 'quantum jamming' physics

Quantum particles moving in one dimension behave collectively like cars in a traffic jam. One moves if all the others agree to do so.
Quantum particles moving in one dimension behave collectively like cars in a traffic jam. One moves if all the others agree to do so.

Abstract:
Miguel A. Cazalilla, a scientist at the CFM (a joint CSIC-UPV/EHU center) and the Donostia International Physics Center (DIPC), together with other four colleagues from various institutions in Europe and the United States, was recently invited to write a review article that has been just published in the prestigious journal Reviews of Modern Physics of the American Physical Society, where only leading scientists in their field of physics are invited to contribute. The article, "One dimensional Bosons: From Condensed Matter to Ultracold Atoms", offers a glimpse into the recent progress in the field of one dimensional quantum many-particle physics.

Future development of smaller and more powerful electronics requires the understanding of 'quantum jamming' physics

San Sebastian, Spain | Posted on January 9th, 2012

Understanding the properties of matter confined in narrow channels is becoming more and more necessary as the size of elements of microchips is pushed towards the limits of miniaturization by the electronics industry. In the future, the properties of electronic devices, as well as the wires connecting them, will be strongly affected by quantum effects. The field of one dimensional quantum many-particle physics has recently moved from speculative theory to experimental evidence thanks to our capabilities to manipulate matter at the nanoscale.

When matter is forced to move essentially in a line, new kinds of collective phenomena emerge. For quantum particles, it is like being trapped in a traffic jam or queuing for movie tickets, in order to move (forward or backward) everyone must agree to do so. Thus, quantum particles like bosons, also stand in line!

Dr. Cazalilla's approach to the subject is based mainly on quantum field theory, a powerful tool that has been very successful in describing the world at the highest energy scales (those found in particle accelerators such as LHC), but also the properties of the many possible phases of matter forced to move in reduced dimensions.

Reviews of Modern Physics of the American Physical Society journal is ranked fourth in the Journal Citation Report 2010 Science Edition with an impact factor 1.5 times higher than the well known journal Nature. Only leading scientists in their fields are invited to contribute to this journal, and thus, the publication of this review it is a recognition of the excellence of Dr. Cazalilla's work.

For those who are interested in the topic, a summary in layman's language can be found in additional information.

####

For more information, please click here

Contacts:
Nora Gonzalez
DIPC

(+34) 943 01 5624

Aitziber Lasa

34-943-363-040

Copyright © Elhuyar Fundazioa

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Internet reference:

Related News Press

News and information

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Physics

Make mine a decaf: Breakthrough in knowledge of how nanoparticles grow: University of Leicester and CNRS researchers observe how nanoparticles grow when exposed to helium July 23rd, 2015

Drawing a line between quantum and classical world: Bell's Inequality fails as a test of the boundary July 21st, 2015

Spintronics just got faster July 20th, 2015

Density-near-zero acoustical metamaterial made in China: Researchers create a tunable membrane 'metamaterial' with near-zero density, effectively recreating the quantum tunneling effect for sound waves July 14th, 2015

Chip Technology

Nanometrics Announces Upcoming Investor Events July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Discoveries

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Announcements

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Research partnerships

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Stretching the limits on conducting wires July 25th, 2015

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Quantum nanoscience

Drawing a line between quantum and classical world: Bell's Inequality fails as a test of the boundary July 21st, 2015

World first: Significant development in the understanding of macroscopic quantum behavior: Researchers from Polytechnique Montréal and Imperial College London demonstrate the wavelike quantum behavior of a polariton condensate on a macroscopic scale and at room temperature July 14th, 2015

The quantum physics of artificial light harvesting: How molecular vibrations make photosynthesis efficient July 13th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project