Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New form of graphene could prevent electronics from overheating and revolutionize thermal management

Abstract:
A new form of graphene created by researchers at The University of Texas at Austin could prevent laptops and other electronics from overheating, ultimately, overcoming one of the largest hurdles to building smaller and more powerful electronic devices.

New form of graphene could prevent electronics from overheating and revolutionize thermal management

Austin, TX | Posted on January 9th, 2012

The research team, which includes colleagues at The University of Texas at Dallas, the University of California-Riverside and Xiamen University in China, published its findings online today in the Advance Online Publication of Nature Materials. The study will also appear in the print journal of Nature Materials.

Led by Professor Rodney S. Ruoff in the Cockrell School's Department of Mechanical Engineering and the Materials Science and Engineering Program, the research demonstrates for the first time that a type of graphene created by the University of Texas researchers is 60 percent more effective at managing and transferring heat than normal graphene.

"This demonstration brings graphene a step closer to being used as a conductor for managing heat in a variety of devices. The potential of this material, and its promise for the electronic industry, is very exciting," said Ruoff, a physical chemist and Cockrell Regents Family Chair, who has pioneered research on graphene-based materials for more than 12 years.

The findings could have a significant impact on the future development of semiconductor electronics. As silicon transistors - foundations of modern-day electronics - are built smaller and faster, more effective heat removal techniques are needed to remove heat dissipated by the transistors as they operate. The latter has become a crucial issue for the electronics industry - one that has spurred a scientific race to develop and find materials more efficient at conducting heat than the materials currently used.

Graphene, an atom-thick layer of carbon, has shown great promise at doing so, and the research findings published today demonstrate for the first time that not only graphene - but the type of graphene used - can play a significant role in how effectively heat is transferred.

Using a laser to both heat and take measurements of a single-layer of graphene, the researchers found that a type of graphene created by Ruoff and other University of Texas researchers is better than any other material tested to date at dissipating heat.

Whereas naturally occurring carbon is found at concentrations of 98.9 percent 12C (carbon) and 1.1 percent 13C, the graphene created at The University of Texas at Austin was made of isotopically pure carbon, 99.99 percent 12C.

"Because self-heating of fast and densely packed devices deteriorates their performance, graphene's ability to conduct heat well will be very helpful in improving them," said Alexander Balandin, a professor of Electrical Engineering, chair of Materials Science and Engineering at the University of California Riverside and a corresponding author of the research paper. "Initially, graphene would likely be used in some niche applications, such as thermal interface materials for chip packaging or transparent electrodes in photovoltaic solar cells or flexible displays. But, in a few years, the uses of graphene will be diverse, broad and far-reaching because the excellent heat conduction properties of this material are beneficial for all its proposed electronic applications."

The National Science Foundation, W.M. Keck Foundation and the Office of Naval Research funded the University of Texas research team. The team includes Ruoff, graduate student Columbia Mishra, post-doctoral fellow Shanshan Chen and former post-doctoral fellow Weiwei Cai, who is now a professor at the Xiamen University in China.

####

For more information, please click here

Contacts:
Melissa Mixon

512-471-2129

Copyright © University of Texas at Austin

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Graphene/ Graphite

Researchers design one of the strongest, lightest materials known: Porous, 3-D forms of graphene developed at MIT can be 10 times as strong as steel but much lighter January 7th, 2017

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

First use of graphene to detect cancer cells: System able to detect activity level of single interfaced cell December 20th, 2016

New graphene-based system could help us see electrical signaling in heart and nerve cells: Berkeley-Stanford team creates a system to visualize faint electric fields December 19th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Chip Technology

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Discoveries

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Announcements

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Research partnerships

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project