Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New form of graphene could prevent electronics from overheating and revolutionize thermal management

Abstract:
A new form of graphene created by researchers at The University of Texas at Austin could prevent laptops and other electronics from overheating, ultimately, overcoming one of the largest hurdles to building smaller and more powerful electronic devices.

New form of graphene could prevent electronics from overheating and revolutionize thermal management

Austin, TX | Posted on January 9th, 2012

The research team, which includes colleagues at The University of Texas at Dallas, the University of California-Riverside and Xiamen University in China, published its findings online today in the Advance Online Publication of Nature Materials. The study will also appear in the print journal of Nature Materials.

Led by Professor Rodney S. Ruoff in the Cockrell School's Department of Mechanical Engineering and the Materials Science and Engineering Program, the research demonstrates for the first time that a type of graphene created by the University of Texas researchers is 60 percent more effective at managing and transferring heat than normal graphene.

"This demonstration brings graphene a step closer to being used as a conductor for managing heat in a variety of devices. The potential of this material, and its promise for the electronic industry, is very exciting," said Ruoff, a physical chemist and Cockrell Regents Family Chair, who has pioneered research on graphene-based materials for more than 12 years.

The findings could have a significant impact on the future development of semiconductor electronics. As silicon transistors - foundations of modern-day electronics - are built smaller and faster, more effective heat removal techniques are needed to remove heat dissipated by the transistors as they operate. The latter has become a crucial issue for the electronics industry - one that has spurred a scientific race to develop and find materials more efficient at conducting heat than the materials currently used.

Graphene, an atom-thick layer of carbon, has shown great promise at doing so, and the research findings published today demonstrate for the first time that not only graphene - but the type of graphene used - can play a significant role in how effectively heat is transferred.

Using a laser to both heat and take measurements of a single-layer of graphene, the researchers found that a type of graphene created by Ruoff and other University of Texas researchers is better than any other material tested to date at dissipating heat.

Whereas naturally occurring carbon is found at concentrations of 98.9 percent 12C (carbon) and 1.1 percent 13C, the graphene created at The University of Texas at Austin was made of isotopically pure carbon, 99.99 percent 12C.

"Because self-heating of fast and densely packed devices deteriorates their performance, graphene's ability to conduct heat well will be very helpful in improving them," said Alexander Balandin, a professor of Electrical Engineering, chair of Materials Science and Engineering at the University of California Riverside and a corresponding author of the research paper. "Initially, graphene would likely be used in some niche applications, such as thermal interface materials for chip packaging or transparent electrodes in photovoltaic solar cells or flexible displays. But, in a few years, the uses of graphene will be diverse, broad and far-reaching because the excellent heat conduction properties of this material are beneficial for all its proposed electronic applications."

The National Science Foundation, W.M. Keck Foundation and the Office of Naval Research funded the University of Texas research team. The team includes Ruoff, graduate student Columbia Mishra, post-doctoral fellow Shanshan Chen and former post-doctoral fellow Weiwei Cai, who is now a professor at the Xiamen University in China.

####

For more information, please click here

Contacts:
Melissa Mixon

512-471-2129

Copyright © University of Texas at Austin

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Graphene

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Graphenea opens US branch October 16th, 2014

Charged graphene gives DNA a stage to perform molecular gymnastics October 9th, 2014

Unconventional photoconduction in an atomically thin semiconductor: New mechanism of photoconduction could lead to next-generation excitonic devices October 9th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Chip Technology

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Discoveries

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Announcements

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Research partnerships

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

IRLYNX and CEA-Leti to Streamline New CMOS-based Infrared Sensing Modules Dedicated to Human-activities Characterization October 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE