Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New form of graphene could prevent electronics from overheating and revolutionize thermal management

Abstract:
A new form of graphene created by researchers at The University of Texas at Austin could prevent laptops and other electronics from overheating, ultimately, overcoming one of the largest hurdles to building smaller and more powerful electronic devices.

New form of graphene could prevent electronics from overheating and revolutionize thermal management

Austin, TX | Posted on January 9th, 2012

The research team, which includes colleagues at The University of Texas at Dallas, the University of California-Riverside and Xiamen University in China, published its findings online today in the Advance Online Publication of Nature Materials. The study will also appear in the print journal of Nature Materials.

Led by Professor Rodney S. Ruoff in the Cockrell School's Department of Mechanical Engineering and the Materials Science and Engineering Program, the research demonstrates for the first time that a type of graphene created by the University of Texas researchers is 60 percent more effective at managing and transferring heat than normal graphene.

"This demonstration brings graphene a step closer to being used as a conductor for managing heat in a variety of devices. The potential of this material, and its promise for the electronic industry, is very exciting," said Ruoff, a physical chemist and Cockrell Regents Family Chair, who has pioneered research on graphene-based materials for more than 12 years.

The findings could have a significant impact on the future development of semiconductor electronics. As silicon transistors - foundations of modern-day electronics - are built smaller and faster, more effective heat removal techniques are needed to remove heat dissipated by the transistors as they operate. The latter has become a crucial issue for the electronics industry - one that has spurred a scientific race to develop and find materials more efficient at conducting heat than the materials currently used.

Graphene, an atom-thick layer of carbon, has shown great promise at doing so, and the research findings published today demonstrate for the first time that not only graphene - but the type of graphene used - can play a significant role in how effectively heat is transferred.

Using a laser to both heat and take measurements of a single-layer of graphene, the researchers found that a type of graphene created by Ruoff and other University of Texas researchers is better than any other material tested to date at dissipating heat.

Whereas naturally occurring carbon is found at concentrations of 98.9 percent 12C (carbon) and 1.1 percent 13C, the graphene created at The University of Texas at Austin was made of isotopically pure carbon, 99.99 percent 12C.

"Because self-heating of fast and densely packed devices deteriorates their performance, graphene's ability to conduct heat well will be very helpful in improving them," said Alexander Balandin, a professor of Electrical Engineering, chair of Materials Science and Engineering at the University of California Riverside and a corresponding author of the research paper. "Initially, graphene would likely be used in some niche applications, such as thermal interface materials for chip packaging or transparent electrodes in photovoltaic solar cells or flexible displays. But, in a few years, the uses of graphene will be diverse, broad and far-reaching because the excellent heat conduction properties of this material are beneficial for all its proposed electronic applications."

The National Science Foundation, W.M. Keck Foundation and the Office of Naval Research funded the University of Texas research team. The team includes Ruoff, graduate student Columbia Mishra, post-doctoral fellow Shanshan Chen and former post-doctoral fellow Weiwei Cai, who is now a professor at the Xiamen University in China.

####

For more information, please click here

Contacts:
Melissa Mixon

512-471-2129

Copyright © University of Texas at Austin

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Graphene

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Graphenea opens US branch October 16th, 2014

Charged graphene gives DNA a stage to perform molecular gymnastics October 9th, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Electronic skin' could improve early breast cancer detection October 29th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Chip Technology

Sussex physicists find simple solution for quantum technology challenge October 28th, 2014

Watching the hidden life of materials: Ultrafast electron diffraction experiments open a new window on the microscopic world October 27th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Discoveries

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Announcements

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Research partnerships

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Sussex physicists find simple solution for quantum technology challenge October 28th, 2014

Molecular beacons shine light on how cells 'crawl' October 27th, 2014

New evidence for an exotic, predicted superconducting state October 27th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE