Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Reading life’s building blocks: Harvard researchers develop tools to speed DNA sequencing

mage courtesy of Slaven Garaj, Jene Golovchenko, Jing Kong, Daniel Branton, W. Hubbard, and A. Reina

In a Nature Nanotechnology cover article, researchers from Harvard and the Massachusetts Institute of Technology demonstrated that a long DNA molecule can be pulled through a graphene nanopore.
mage courtesy of Slaven Garaj, Jene Golovchenko, Jing Kong, Daniel Branton, W. Hubbard, and A. Reina In a Nature Nanotechnology cover article, researchers from Harvard and the Massachusetts Institute of Technology demonstrated that a long DNA molecule can be pulled through a graphene nanopore.

Abstract:
Scientists are one step closer to a revolution in DNA sequencing, following the development in a Harvard lab of a tiny device designed to read the minute electrical changes produced when DNA strands are passed through tiny holes — called nanopores — in an electrically charged membrane.

Reading life’s building blocks: Harvard researchers develop tools to speed DNA sequencing

Cambridge, MA | Posted on January 6th, 2012

As described in Nature Nanotechnology on Dec. 11, a research team led by Charles Lieber, the Mark Hyman Jr. Professor of Chemistry, have succeeded for the first time in creating an integrated nanopore detector, a development that opens the door to the creation of devices that could use arrays of millions of the microscopic holes to sequence DNA quickly and cheaply.

First described more than 15 years ago, nanopore sequencing measures subtle electrical current changes produced as the four base molecules that make up DNA pass through the pore. By reading those changes, researchers can effectively sequence DNA.

But reading those subtle changes in current is far from easy. A series of challenges — from how to record the tiny changes in current to how to scale up the sequencing process — meant the process has never been possible on a large scale. Lieber and his team, however, believe they have found a unified solution to most of those problems.

"Until we developed our detector, there was no way to locally measure the changes in current," Lieber said. "Our method is ideal because it is extremely localized. We can use all the existing work that has been done on nanopores, but with a local detector we're one step closer to completely revolutionizing sequencing."

The detector developed by Lieber and his team grew out of earlier work on nanowires. Using the ultra-thin wires as a nanoscale transistor, they are able to measure the changes in current more locally and accurately than ever before.

"The nanowire transistor measures the electrical potential change at the pore and effectively amplifies the signal," Lieber said. "In addition to a larger signal, that allows us to read things much more quickly. That's important because DNA is so large [that] the throughput for any sequencing method needs to be high. In principle, this detector can work at gigahertz frequencies."

The highly localized measurement also opens the door to parallel sequencing, which uses arrays of millions of pores to speed the sequencing process dramatically.

In addition to the potential for greatly improving the speed of sequencing, the new detector holds the promise of dramatically reducing the cost of DNA sequencing, said Ping Xie, an associate of the Department of Chemistry and Chemical Biology and co-author of the paper describing the research.

Current sequencing methods often start with a process called the polymerase chain reaction, or DNA amplification, which copies a small amount of DNA thousands of millions of times, making it easier to sequence. Though critically important to biology, the process is expensive, requiring chemical supplies and expensive laboratory equipment.

In the future, Xie said, it will be possible to build the nanopore sequencing technology onto a silicon chip, allowing doctors, researchers, or even the average person to use DNA sequencing as a diagnostic tool.

The breakthrough by Lieber's team could soon make the transition from lab to commercial product. The Harvard Office of Technology Development is working on a strategy to commercialize the technology appropriately, including licensing it to a company that plans to incorporate it into their DNA sequencing platform.

"Right now, we are limited in our ability to perform DNA sequencing," Xie said. "Current sequencing technology is where computers were in the '50s and '60s. It requires a lot of equipment and is very expensive. But just 50 years later, computers are everywhere, even in greeting cards. Our detector opens the door to doing a blood draw and immediately knowing what a patient is infected with, and very quickly making treatment decisions."

####

For more information, please click here

Copyright © Harvard University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Nanomedicine

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution February 24th, 2015

Together, nanotechnology and genetic interference may tackle 'untreatable' brain tumors: Tel Aviv University researchers' groundbreaking strategy stops brain tumor cell proliferation with targeted nanoparticles February 24th, 2015

Discoveries

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Simple, Cost-Efficient Method Used to Determine Toxicants Growing in Pistachio February 26th, 2015

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

Announcements

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Tools

Hiden CATLAB Microreactor System at ARABLAB 2015 | Visit us on Booth 1011 February 26th, 2015

Renishaw and Bruker team up for a workshop on TERS and co-localised AFM Raman February 26th, 2015

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Patents/IP/Tech Transfer/Licensing

New Paper-like Material Could Boost Electric Vehicle Batteries: Researchers create silicon nanofibers 100 times thinner than human hair for potential applications in batteries for electric cars and personal electronics February 20th, 2015

Nanotech Discoveries Move from Lab to Marketplace with Lintec Deal: Licensing Partnership Brings Together University Technology, New Richardson-Based Facility Directed by Alumni February 9th, 2015

Graphenea granted patent on graphene transfer February 9th, 2015

Toronto-based Environmental Technology Pioneer Green Earth Nano Science Expands in EU February 6th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE