Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A 3-Dimensional View of 1-Dimensional Nanostructures

Abstract:
Just 100 nanometers in diameter, nanowires are often considered one-dimensional. But researchers at Northwestern University have recently reported that individual gallium nitride nanowires show strong piezoelectricity - a type of charge-generation caused by mechanical stress - in three dimensions.

A 3-Dimensional View of 1-Dimensional Nanostructures

Evanston, IL | Posted on January 6th, 2012

The findings, led by Horacio Espinosa, James N. and Nancy J. Farley Professor in Manufacturing and Entrepreneurship at the McCormick School of Engineering and Applied Science, were published online Dec. 22 in Nano Letters.

Gallium nitride (GaN) is among the most technologically relevant semiconducting materials and is ubiquitous today in optoelectronic elements such as blue lasers (hence the blue-ray disc) and light-emitting-diodes (LEDs). More recently, nanogenerators based on GaN nanowires were demonstrated capable of converting mechanical energy (such as biomechanical motion) to electrical energy.

"Although nanowires are one-dimensional nanostructures, some properties - such as piezoelectricity, the linear form of electro-mechanical coupling - are three-dimensional in nature," Espinosa said. "We thought these nanowires should show piezoelectricity in 3D, and aimed at obtaining all the piezoelectric constants for individual nanowires, similar to the bulk material."

The findings revealed that individual GaN nanowires as small as 60 nanometers show piezoelectric behavior in 3D up to six times of their bulk counterpart. Since the generated charge scales linearly with piezoelectric constants, this finding implies that nanowires are up to six times more efficient in converting mechanical to electrical energy.

To obtain the measurements, researchers applied an electric field in different directions in single nanowire and measured small displacements, often in pico-meter (10-12 m) range. The group devised a method based on scanning probe microscopy leveraging high-precision displacement measurement capability of an atomic force microscope.

"The measurements were very challenging, since we needed to accurately measure displacements 100 times smaller than the size of the hydrogen atom," said Majid Minary, a postdoctoral fellow and the lead author of the study.

These results are exciting especially considering the recent demonstration of nanogenerators based on GaN nanowires, for powering of self-powered nanodevices.

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the article, “Individual GaN Nanowires Exhibit Strong Piezoelectricity in 3D.”

Related News Press

News and information

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Conductive Inks: booming to $2.8 billion by 2024 April 17th, 2014

Nanoelectronics

Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Preview of Hands-on Nanotechnology Demos at ‘Chemistry of Wine’ Fundraiser to Show Nanotech Magic April 8th, 2014

Discoveries

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Thinnest feasible membrane produced April 17th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Announcements

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE