Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A 3-Dimensional View of 1-Dimensional Nanostructures

Abstract:
Just 100 nanometers in diameter, nanowires are often considered one-dimensional. But researchers at Northwestern University have recently reported that individual gallium nitride nanowires show strong piezoelectricity - a type of charge-generation caused by mechanical stress - in three dimensions.

A 3-Dimensional View of 1-Dimensional Nanostructures

Evanston, IL | Posted on January 6th, 2012

The findings, led by Horacio Espinosa, James N. and Nancy J. Farley Professor in Manufacturing and Entrepreneurship at the McCormick School of Engineering and Applied Science, were published online Dec. 22 in Nano Letters.

Gallium nitride (GaN) is among the most technologically relevant semiconducting materials and is ubiquitous today in optoelectronic elements such as blue lasers (hence the blue-ray disc) and light-emitting-diodes (LEDs). More recently, nanogenerators based on GaN nanowires were demonstrated capable of converting mechanical energy (such as biomechanical motion) to electrical energy.

"Although nanowires are one-dimensional nanostructures, some properties - such as piezoelectricity, the linear form of electro-mechanical coupling - are three-dimensional in nature," Espinosa said. "We thought these nanowires should show piezoelectricity in 3D, and aimed at obtaining all the piezoelectric constants for individual nanowires, similar to the bulk material."

The findings revealed that individual GaN nanowires as small as 60 nanometers show piezoelectric behavior in 3D up to six times of their bulk counterpart. Since the generated charge scales linearly with piezoelectric constants, this finding implies that nanowires are up to six times more efficient in converting mechanical to electrical energy.

To obtain the measurements, researchers applied an electric field in different directions in single nanowire and measured small displacements, often in pico-meter (10-12 m) range. The group devised a method based on scanning probe microscopy leveraging high-precision displacement measurement capability of an atomic force microscope.

"The measurements were very challenging, since we needed to accurately measure displacements 100 times smaller than the size of the hydrogen atom," said Majid Minary, a postdoctoral fellow and the lead author of the study.

These results are exciting especially considering the recent demonstration of nanogenerators based on GaN nanowires, for powering of self-powered nanodevices.

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the article, “Individual GaN Nanowires Exhibit Strong Piezoelectricity in 3D.”

Related News Press

News and information

A step closer to understanding quantum mechanics: Swansea University’s physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

Nanoelectronics

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Columbia engineers invent breakthrough millimeter-wave circulator IC October 6th, 2017

Tungsten offers nano-interconnects a path of least resistance: Crystalline tungsten shows insight and promise in addressing the challenges of electrical interconnects that have high resistivity at the nanoscale October 4th, 2017

Discoveries

A step closer to understanding quantum mechanics: Swansea University’s physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Announcements

A step closer to understanding quantum mechanics: Swansea University’s physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

On the road to fire-free, lithium-ion batteries made with asphalt October 12th, 2017

Organic/inorganic sulfur may be key for safe rechargeable lithium batteries October 12th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project