Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Thinking Big about Small-Scale Research: Advanced Materials Special Issue featuring the International Center for Materials Nanoarchitectonics

Abstract:
"Nano-" has been a buzzword, or rather "buzz-prefix", in materials science for almost 20 years now. Indeed, it is rare to find a chemistry/physics/engineering research unit without some members dedicated to the study of making and manipulating objects on an atomic or molecular scale. But sometimes the investigation of things so small is best carried out using a large-scale approach. The Japanese Government certainly thought so, and when it formed the International Center for Materials Nanoarchitectonics (WPI-MANA, www.nims.go.jp/mana/) in 2007 it created "one of the most successful research ventures ever initiated", according to Harry Kroto, Nobel Laureate and Advisor to MANA.

Thinking Big about Small-Scale Research: Advanced Materials Special Issue featuring the International Center for Materials Nanoarchitectonics

Weinheim, Germany | Posted on January 4th, 2012

According to Director General Masakazu Aono, MANA's aim is to combine nanotechnology and materials science to "produce cutting-edge research by promoting the participation of leading scientists from around the world and by providing an attractive research environment." The extremely high quality of the research and the global nature of the scientists involved are both evident in recent results from MANA which have now been published together in a special issue of Advanced Materials.



MANA hosts over 200 research scientists, with almost half coming from outside Japan.



According to Aono, in order to fully develop the potential of the science called nanotechnology, the end results must be greater than the sum of the constituent parts - the tiny objects must interact in such a way as to create entirely new properties or functionalities. "We coined the term nanoarchitectonics to express this innovation of nanotechnology: it is a technology system aimed at arranging nanoscale structural units - a group of atoms, molecules, or nanoscale functional components - into a configuration that creates a novel functionality through mutual interactions among those units."



Various techniques are used to arrange the objects, including self-organization and the use of external fields, such as electric or magnetic. The approach can be likened to constructing a house, different materials are designed and arranged carefully to create a complex and useful object. The cover picture above illustrates this comparison, with the new building that is being constructed to house MANA shown with a molecular assembly; both macroscopic architecture and nano-architecture are shown.



MANA scientists do not make houses, but design and construct a broad range of other useful systems. From sensors to catalysts to brain-like electronic circuits, MANA scientists see the tremendous potential for using nanotechnology.



In addition to the research papers listed below, the issue includes as a bonus Nobel Laureate and MANA Advisor Heinrich Rohrer offering his insights on the relationship between society and science and some advice for researchers in an editorial. You can also discover why Kroto thinks so highly of MANA.



The breadth of research is illustrated in the papers presented. Some titles are abbreviated and the "Nano-Fields" are those used in MANA:

Nano-Materials papers:2D Dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks (M.Osada and T. Sasaki), Mechanical control of nanomaterials and nanosystems (K. Ariga et al.), Nanoengineering and property studies in a transmission electron microscope (D .Goldberg et al.), Self-powered nanosensors and nanosystems (Z. L. Wang).

Nano-Systems papers: Atomic switches - atom/ion movement controlled devices for beyond-von Neumann computers (T. Hasegawa et al.), Emergent criticality in Turing B-type atomic switch networks (A.Z. Steig, et al.) Half-metallic antiferromagnets as a prospective materials for spintronics (X. Hu et al.), Composite particles: superconductor/semiconductor/superconductor junctions (R. Inoue and H. Takayanagi), Self-assembly of semiconductors for solution-based organic field-effect transistor fabrication (T. Minariet al.), Designs of molecular logic gates (C. Joachim et al.).

Nano-Green papers: Nanophotocatalytic materials (H. Tong et al.), Solid-oxide fuel cells (E. Fabbri et al.), Molecular catalysts (T. Masuda et al.).

Nano-Bio papers: Shape-Memory Surface with Dynamically Tuneable Nano-Geometry Activated by Body Heat (M. Ebara et al.).



Advanced Materials, Volume 24, Issue 2. The special issue is available at doi.wiley.com/10.1002/adma.v24.2 or on MaterialsViews.com.

Guest Editors:

Masakazu Aono (Director General):

Yoshio Bando (Chief Operating Officer):

Katsuhiko Ariga (Principal Investigator):

International Center for Materials Nanoarchitectonics (WPI-MANA)

National Institute of Materials Science (NIMS)

1-1 Namiki, Tsukuba, Ibaraki 305-0044 Japan

####

For more information, please click here

Contacts:
Carmen Teutsch
Editor & Press coordinator
Materials Science and Physics Journals
Wiley-VCH
Boschstrasse 12
69469 Weinheim, Germany
Email:
Phone: +49 6201-606-238
Fax: +49 6201-606-510
Full text: onlinelibrary.wiley.com

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Chemistry

Creating new materials with quantum effects for electronics January 29th, 2015

Anti-microbial coatings with a long-term effect for surfaces – presentation at nano tech 2015 in Japan January 21st, 2015

Hydrogels deliver on blood-vessel growth: Rice researchers introduce improved injectable scaffold to promote healing January 20th, 2015

Graphene enables all-electrical control of energy flow from light emitters: First signatures of graphene plasmons at telecommunications wavelength revealed January 20th, 2015

Spintronics

Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories: Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks January 28th, 2015

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Chip Technology

Creating new materials with quantum effects for electronics January 29th, 2015

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Researchers Make Magnetic Graphene: UC Riverside research could lead to new multi-functional electronic devices January 27th, 2015

Nanometrics to Present at the Stifel 2015 Technology, Internet and Media Conference January 27th, 2015

Self Assembly

Engineering self-assembling amyloid fibers January 26th, 2015

Revealed: How bacteria drill into our cells and kill them December 2nd, 2014

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Outsmarting Thermodynamics in Self-assembly of Nanostructures: Berkeley Lab reports method for symmetry-breaking in feedback-driven self-assembly of optical metamaterials November 4th, 2014

Sensors

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015

Materials/Metamaterials

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

The Original Frameless Shower Doors Installs DFI's FuseCube™ to Offer Hydrophobic Protective Coating as a Standard Feature: First DFI FuseCube™ Installed on the East Coast to Enable Key Differentiator for the Original Frameless Shower Doors January 29th, 2015

Creating new materials with quantum effects for electronics January 29th, 2015

Announcements

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Energy

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchers’ crystal-production insights resolve manufacturing difficulty January 29th, 2015

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

Fuel Cells

New concept of fuel cell for efficiency and environment: It grasps both performance efficiency and removal of toxic heavy metal ions in direct methanol fuel cells January 5th, 2015

Toward a low-cost 'artificial leaf' that produces clean hydrogen fuel December 3rd, 2014

Single-atom gold catalysts may offer path to low-cost production of fuel and chemicals November 28th, 2014

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE