Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Graphene-based Catalyst Shows Promise for Fuel Cells

The graphene-based catalyst Fe-N-rGO has a much higher oxygen reduction reaction catalytic activity than those based on carbon black or oxidized carbon black.
The graphene-based catalyst Fe-N-rGO has a much higher oxygen reduction reaction catalytic activity than those based on carbon black or oxidized carbon black.

Abstract:
MIT scientists, doing part of their work on beamline X11 at the National Synchrotron Light Source, have made a promising graphene-based catalyst to improve fuel cells.

Graphene-based Catalyst Shows Promise for Fuel Cells

Upton, NY | Posted on January 3rd, 2012

Fuel cells convert hydrogen and oxygen into water, making electricity in the process. They are a source of quiet, efficient and clean energy, with the potential to replace combustion-based technologies in transportation and power applications. Starting in the 1960s, the U.S. put alkaline fuel cells on board spacecraft to produce electricity and water. Promising fuel-cell technologies of today include polymer-electrolyte-membrane fuel cells, also known as proton-exchange-membrane fuel cells (PEMFCs).

PEMFCs have the highest energy density of all fuel-cell types. They also have a relatively low operating temperature (ranging from 60-80 degrees Celsius), which means they warm up quickly - and begin generating electricity. That makes PEMFCs especially appealing for use in vehicles and in portable- and backup-power applications. Because they typically use platinum as a catalyst, however, the high cost of PEMFCs inhibits commercial development. To bring down the cost, research is focused on developing a non-precious-metal catalyst made of iron, nitrogen and carbon (Fe-N-C).

The team from MIT - Hye Ryung Byon, Jin Suntivich, and Yang Shao-Horn - prepared a graphene-based Fe-N-C catalyst (graphene is a monolayer of carbon) with high oxygen reduction reaction (ORR) activity, plus stability in acid. The method involves heat treatment of a mixture of Fe salt, graphitic carbon nitride and chemically reduced graphene (rGO).

The graphene-based catalyst exhibits reduction activity approaching those of the state-of-the-art, non-noble-metal catalysts reported to date, which highlights the opportunities of using the unusual surface chemistry of rGO to create active Fe-N sites and develop an improved catalyst.

Our approach is uniquely different from other groups," said MIT's Yang Shao-Horn, who is the Gail E. Kendall Associate Professor of Mechanical Engineering at the university. "We start from molecular building blocks and precisely control the surface chemistry of graphene as we build the catalyst."

The researchers examined the surface chemical composition of Fe-N-rGO by x-ray photoelectron spectroscopy (XPS) and studied the atomic coordination of Fe by extended x-ray absorption fine structure (EXAFS). XPS and EXAFS of the Fe-N-rGO sample provided evidence for the incorporation of Fe ion and N into the rGO upon annealing.

Characterizing the Fe-N functionalization is experimentally very difficult, explained Shao-Horn, and x-ray absorption is one of the few techniques that can accomplish this task. "We use the X11 beamline at NSLS, where we have excellent support," she added. "We are extremely fortunate to have this collaboration."

According to Shao-Horn, ongoing work includes examination of Fe-N-rGo's performance and lifetime in a more realistic fuel-cell configuration.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

For more information, please click here

Contacts:
Mona S. Rowe

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Graphene/ Graphite

Cooling graphene-based film close to pilot-scale production April 30th, 2016

University of Illinois researchers create 1-step graphene patterning method April 27th, 2016

Laboratories

Exploring phosphorene, a promising new material April 29th, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

Govt.-Legislation/Regulation/Funding/Policy

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Announcements

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Fuel Cells

Ruthenium nanoframes open the doors to better catalysts April 4th, 2016

Saving sunshine for a rainy day: New catalyst offers efficient storage of green energy: Team led by U of T Engineering designs world's most efficient catalyst for storing energy as hydrogen by splitting water molecules March 28th, 2016

Carbon leads the way in clean energy: Groundbreaking research at Griffith University is leading the way in clean energy, with the use of carbon as a way to deliver energy using hydrogen March 23rd, 2016

Physicists prove energy input predicts molecular behavior: Theoretical proof could lead to more reliable nanomachines March 22nd, 2016

Research partnerships

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic