Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Graphene-based Catalyst Shows Promise for Fuel Cells

The graphene-based catalyst Fe-N-rGO has a much higher oxygen reduction reaction catalytic activity than those based on carbon black or oxidized carbon black.
The graphene-based catalyst Fe-N-rGO has a much higher oxygen reduction reaction catalytic activity than those based on carbon black or oxidized carbon black.

Abstract:
MIT scientists, doing part of their work on beamline X11 at the National Synchrotron Light Source, have made a promising graphene-based catalyst to improve fuel cells.

Graphene-based Catalyst Shows Promise for Fuel Cells

Upton, NY | Posted on January 3rd, 2012

Fuel cells convert hydrogen and oxygen into water, making electricity in the process. They are a source of quiet, efficient and clean energy, with the potential to replace combustion-based technologies in transportation and power applications. Starting in the 1960s, the U.S. put alkaline fuel cells on board spacecraft to produce electricity and water. Promising fuel-cell technologies of today include polymer-electrolyte-membrane fuel cells, also known as proton-exchange-membrane fuel cells (PEMFCs).

PEMFCs have the highest energy density of all fuel-cell types. They also have a relatively low operating temperature (ranging from 60-80 degrees Celsius), which means they warm up quickly - and begin generating electricity. That makes PEMFCs especially appealing for use in vehicles and in portable- and backup-power applications. Because they typically use platinum as a catalyst, however, the high cost of PEMFCs inhibits commercial development. To bring down the cost, research is focused on developing a non-precious-metal catalyst made of iron, nitrogen and carbon (Fe-N-C).

The team from MIT - Hye Ryung Byon, Jin Suntivich, and Yang Shao-Horn - prepared a graphene-based Fe-N-C catalyst (graphene is a monolayer of carbon) with high oxygen reduction reaction (ORR) activity, plus stability in acid. The method involves heat treatment of a mixture of Fe salt, graphitic carbon nitride and chemically reduced graphene (rGO).

The graphene-based catalyst exhibits reduction activity approaching those of the state-of-the-art, non-noble-metal catalysts reported to date, which highlights the opportunities of using the unusual surface chemistry of rGO to create active Fe-N sites and develop an improved catalyst.

Our approach is uniquely different from other groups," said MIT's Yang Shao-Horn, who is the Gail E. Kendall Associate Professor of Mechanical Engineering at the university. "We start from molecular building blocks and precisely control the surface chemistry of graphene as we build the catalyst."

The researchers examined the surface chemical composition of Fe-N-rGO by x-ray photoelectron spectroscopy (XPS) and studied the atomic coordination of Fe by extended x-ray absorption fine structure (EXAFS). XPS and EXAFS of the Fe-N-rGO sample provided evidence for the incorporation of Fe ion and N into the rGO upon annealing.

Characterizing the Fe-N functionalization is experimentally very difficult, explained Shao-Horn, and x-ray absorption is one of the few techniques that can accomplish this task. "We use the X11 beamline at NSLS, where we have excellent support," she added. "We are extremely fortunate to have this collaboration."

According to Shao-Horn, ongoing work includes examination of Fe-N-rGo's performance and lifetime in a more realistic fuel-cell configuration.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

For more information, please click here

Contacts:
Mona S. Rowe

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Laboratories

Nanoscale view of energy storage January 16th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

NIST physicists 'squeeze' light to cool microscopic drum below quantum limit January 12th, 2017

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Graphene/ Graphite

Researchers design one of the strongest, lightest materials known: Porous, 3-D forms of graphene developed at MIT can be 10 times as strong as steel but much lighter January 7th, 2017

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

First use of graphene to detect cancer cells: System able to detect activity level of single interfaced cell December 20th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Announcements

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Fuel Cells

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

It's basic: Alternative fuel cell technology reduces cost: Study sets performance targets for metal-free fuel cell membrane December 13th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Water vapor sets some oxides aflutter: Newly discovered phenomenon could affect materials in batteries and water-splitting devices October 3rd, 2016

Research partnerships

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project