Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > ALD to Enable Novel, High Efficiency Silicon Nanorod Solar Cells

Abstract:
Picosun Oy, Finland-based global manufacturer of state-of-the-art Atomic Layer Deposition (ALD) equipment, reports successful final results of the European Union 7th Framework Programme funded research project ROD-SOL. The goal of this multinational, inter-European, three years (2009-2011) project combining the efforts of both scientific and industrial partners has been to dramatically increase the efficiency of solar cells and reduce the costs of their manufacturing. This has been achieved with novel, innovative, silicon nanorod based concept. The amount of active photovoltaic material (Si) can be significantly reduced by growing the light-trapping nanorod "forests" (thickness from < 1́m to a few ́m at most) on cheaper substrates such as glass or flexible foils. This has led to already promising over 9 % energy conversion efficiencies with very good long-term stabilities of cells. Due to their effectively 3D geometry, the nanorod forests have high active surface area which enables efficient light absorption - much more efficient than in convenient 2D thin film solar cells. Also, the location of the p-n junction much closer to the surface than in normal solar cells radically improves the minority carrier charge transport and thus the amount of electricity that can be extracted from the cell.

ALD to Enable Novel, High Efficiency Silicon Nanorod Solar Cells

Espoo, Finland | Posted on January 2nd, 2012

Due to the micrometer/sub-micrometer dimensions of the nanorod forests (dense packing, rod diameters typically few hundreds of nm and lengths < 1 ́m) ALD has proven to be ideal technique for manufacturing some of the most crucial cell components. To prevent recombination losses in the active photovoltaic layer and thus cell efficiency decrease, a recombination barrier i.e. passivation layer needs to be coated on the rods' surface. An ultrathin ALD-deposited Al2O3 film serves ideally this purpose, and the gas-phase, surface-controlled and self-limiting nature of the ALD process ensures that even the deepest and narrowest between-the-rods nooks and crannies will be reliably covered with 100 % uniform, conformal and pinhole- and defect-free passivation film. Another central cell component where ALD has shown its indispensability is the transparent conductive oxide (TCO) layer that works as the current collector on the top of the cell. Different TCO deposition methods were
investigated in the course of the project, and ALD turned out to be the ideal method regarding both the TCO film quality and the scalability of the technique, due to Picosun's fast, efficient and easy-to-use HVM (High Volume Manufacturing) batch ALD system, which was developed specifically during the project ROD-SOL.

"Solar photovoltaics still remains one of the fastest growing industries in the world. To enable more efficient utilization of this free, clean energy, the efficiencies of the solar cells have to increase and their manufacturing costs decrease. ROD-SOL's silicon nanorod cell concept shows promising potential to this, and we at Picosun have been especially satisfied of the ALD's central role in realizing this novel, innovative, high efficiency solar electricity converter", states Picosun's Managing Director Juhana Kostamo.

####

About Picosun Oy
Picosun Oy is Finnish, globally operating manufacturer of state-of-the-art ALD systems, representing continuity to almost four decades of dedicated, exclusive ALD reactor design and manufacturing. Picosun’s global headquarters are located in Espoo, Finland, its production facilities in Masala, Kirkkonummi, and its US headquarters in Detroit, Michigan. PICOSUN™ ALD tools are chosen for production by various industries across four continents. Picosun Oy is a part of Stephen Industries Inc. Oy.

For more information, please click here

Contacts:
Mr. Juhana Kostamo
Phone: +358 50 321 1955
Fax: +358 9 297 6116

Copyright © Picosun Oy

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Zenosense, Inc. - Hospital Collaboration - 400 Person Lung Cancer Detection Trial December 17th, 2014

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Announcements

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Tools

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

Energy

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

Solar/Photovoltaic

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

New Technique Could Harvest More of the Sun's Energy December 9th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE