Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Badwater Basin: Death Valley Microbe Thrives There: Discovery may lead to novel biotech and nanotech uses

Badwater Basin, lowest elevation in the Western Hemisphere, at Death Valley National Park.

Credit: Dennis Bazylinski and Christopher Lefèvre
Badwater Basin, lowest elevation in the Western Hemisphere, at Death Valley National Park.

Credit: Dennis Bazylinski and Christopher Lefèvre

Abstract:


Nevada, the "Silver State," is well-known for mining precious metals.

But scientists Dennis Bazylinski and colleagues at the University of Nevada Las Vegas (UNLV) do a different type of mining.

They sluice through every water body they can find, looking for new forms of microbial magnetism.

Badwater Basin: Death Valley Microbe Thrives There: Discovery may lead to novel biotech and nanotech uses

Arlington, VA | Posted on December 28th, 2011

In a basin named Badwater on the edge of Death Valley National Park, Bazylinski and researcher Christopher Lefèvre hit pay dirt.

Lefèvre is with the French National Center of Scientific Research and University of Aix-Marseille II.

In this week's issue of the journal Science, Bazylinski, Lefèvre and others report that they identified, isolated and grew a new type of magnetic bacteria that could lead to novel biotech and nanotech uses.

Magnetotactic bacteria are simple, single-celled organisms that are found in almost all bodies of water.

As their name suggests, they orient and navigate along magnetic fields like miniature swimming compass needles.

This is due to the nano-sized crystals of the minerals magnetite or greigite they produce.

The presence of these magnetic crystals makes the bacteria and their internal crystals--called magnetosomes--useful in drug delivery and medical imaging.

The research was funded by the U.S. National Science Foundation (NSF), the U.S. Department of Energy and the French Foundation for Medical Research.

"The finding is significant in showing that this bacterium has specific genes to synthesize magnetite and greigite, and that the proportion of these magnetosomes varies with the chemistry of the environment," said Enriqueta Barrera, program director in NSF's Division of Earth Sciences.

While many magnetite-producing bacteria can be grown and easily studied, Bazylinski and his team were the first to cultivate a greigite-producing species. Greigite is an iron sulfide mineral, the equivalent of the iron oxide magnetite.

"Because greigite-producing bacteria have never been isolated, the crystals haven't been tested for the types of biomedical and other applications that currently use magnetite," said Bazylinski.

"Greigite is an iron sulfide that may be superior to magnetite in some applications due to its slightly different physical and magnetic properties. Now we have the opportunity to find out."

Researchers found the greigite-producing bacterium, called BW-1, in water samples collected more than 280 feet below sea level in Badwater Basin. Lefèvre and Bazylinski later isolated and grew it leading to the discovery that BW-1 produces both greigite and magnetite.

A detailed look at its DNA revealed that BW-1 has two sets of magnetosome genes, unlike other such bacteria, which produce only one mineral and have only one set of magnetosome genes.

This suggests that the production of magnetite and greigite in BW-1 is likely controlled by separate sets of genes. That could be important in the mass production of either mineral for specific applications.

According to Bazylinski, the greigite-producing bacteria represent a new, previously unrecognized group of sulfate-reducing bacteria that "breathe" the compound sulfate rather than oxygen as most living organisms do.

"With how much is known about sulfate-reducing bacteria, it's surprising that no one has described this group," he said.

Working with Bazylinski and Lefèvre on the project are David Pignol of the French National Center of Scientific Research and University of Aix-Marseille II; Nicolas Menguy of Pierre and Marie Curie University, France; Fernanda Abreu and Ulysses Lins of the Federal University of Rio de Janeiro, Brazil; Mihaly Pósfai of the University of Pannonia, Hungary; Tanya Prozorov of Ames Laboratory, Iowa; and Richard Frankel of California Polytechnic State University, San Luis Obispo.

####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2011, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

For more information, please click here

Contacts:
Cheryl Dybas
NSF
(703) 292-7734


Shane Bevell
UNLV
(702) 895-2079

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Leti and HORIBA Scientific to Host Webinar on Ultrafast Characterization Tool: Plasma Profiling Time-of-Flight Mass Spectrometer Tool Cuts Optimization Time In Layer Deposition and Fabrication of Wide Range of Applications March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Govt.-Legislation/Regulation/Funding/Policy

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Discoveries

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

Announcements

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Leti and HORIBA Scientific to Host Webinar on Ultrafast Characterization Tool: Plasma Profiling Time-of-Flight Mass Spectrometer Tool Cuts Optimization Time In Layer Deposition and Fabrication of Wide Range of Applications March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Nanobiotechnology

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Nanoparticle paves the way for new triple negative breast cancer drug March 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project