Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > ôReversing the problem" clarifies molecular structure: Noise-free spectroscopy

Abstract:
Optical techniques enable us to examine single molecules, but do we really understand what we are seeing? After all, the fuzziness caused by effects such as light interference makes these images very difficult to interpret. Researchers at the University of Twente's MESA+ Institute for Nanotechnology adopted a "reverse" approach to spectroscopy which cleaned up images by eliminating background noise. The researchers presented their findings in Physical Review Letters.

ôReversing the problem" clarifies molecular structure: Noise-free spectroscopy

Enschede, The Netherlands | Posted on December 23rd, 2011

Rather than starting with the laser beam, the trick is to take the molecule you are studying as the starting point. This radical "reversal" led to a relatively simple modification of conventional CARS spectroscopy, which delivered better images. CARS was already a powerful technique which used lasers to visualize molecules for such purposes as food testing and medical imaging. One advantage is that no fluorescent labels are needed to make the molecules visible. However, background noise complicates the task of interpreting the resultant images. This new approach eliminates such noise completely, leaving only the "real" image. More information than ever before, such as accurate details of the substance's concentration, can be obtained using this technique. It is easier to detect the signature of the molecule in question.

Energy

The key to side-stepping the overwhelming complexity involved lay in Prof. Shaul Mukamel's exhortation to just "Look at the molecule!" (the professor, who holds a post at the University of California, collaborated on the present publication). So don't focus on the way that light interacts with the molecule, as this makes it very difficult - even impossible - to "separate the wheat from the chaff" and reveal the real image. Instead, start by examining the energy levels inside the molecule. Previous work, based on Prof. Mukamel's exhortation, has mainly led to the development of new theories. The University of Twente researchers have now translated this theory into the new technique of Vibrational Molecular Interferometry, which will vastly expand the uses of CARS and other techniques.

This study was conducted in Prof. Jennifer Herek's Optical Sciences group. The research group is part of the MESA+ Institute for Nanotechnology of the University of Twente. The study was funded in part by the Foundation for Fundamental Research on Matter (FOM), and partly from the VICI grant previously awarded to Jennifer Herek by the Netherlands Organisation for Scientific Research (NWO).
The publication, entitled "Background-free nonlinear microspectroscopy with vibrational molecular interferometry", by Erik Garbacik, Jeroen Korterik, Cees Otto, Shaul Mukamel, Jennifer Herek and Herman Offerhaus, was published on 16 December, in the online edition of Physical Review Letters.

####

For more information, please click here

Contacts:
Wiebe van der Veen
tel. +31-(0)53-4894244

Copyright © University of Twente

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

Imaging

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Discoveries

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

Announcements

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

Tools

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

The birth of quantum holography: Making holograms of single light particles! July 21st, 2016

A mini-antenna for the data processing of tomorrow: Nature Nanotechnology: Short-wavelength spin waves generated directly for the first time July 20th, 2016

Photonics/Optics/Lasers

RMIT researchers make leap in measuring quantum states July 21st, 2016

The birth of quantum holography: Making holograms of single light particles! July 21st, 2016

Graphene photodetectors: Thinking outside the 2-D box July 21st, 2016

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic