Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Targeted immune stimulation based on DNA Nanotechnology

Abstract:
DNA is usually known as the genetic code for protein synthesis in all living organisms. The application of DNA as a molecular building block on the other hand, allows for the construction of sophisticated nanoscopic shapes that are built entirely from DNA. In particular the recent invention of the so-called DNA origami method facilitates the fabrication of almost all imaginable 3D shapes. Here a phage-based DNA strand is used as a scaffold that is woven into shape by hundreds of short staple oligonucleotides. The outstanding advantage of DNA-based self-assembly is that during a single fabrication process billion exact copies of the designed DNA nanostructure are produced in parallel.

Targeted immune stimulation based on DNA Nanotechnology

Munich, Germany | Posted on December 22nd, 2011

Now Prof. Tim Liedl, a member of NIM, and his team developed a DNA origami construct that serves as a carrier system to selectively stimulate immune responses of living cells. Together with the group of Prof. Carole Bourquin from the Klinikum der Universität München (KUM) the biophysicists investigated the systematic immune stimulatory effect and the potential cytotoxicity of these DNA nanostructures.

Our innate immune system can detect invasive organisms via a specific DNA motif, the so called CpG sequences ("Cytosine - phosphate - Guanine") which are prevalent in viruses and bacteria. When these sequences are internalized by certain immune cells, they are recognized by endosomal receptors like the Toll-Like Receptor 9 (TLR-9) which subsequently activate the immune system. The Toll-Like Receptors became famous at the latest in 2011, when Bruce Beutler and Jules Hoffmann received the Nobel Prize for their research on these kinds of receptors.

Verena Schüller from the Liedl group and her colleagues decorated a DNA origami construct with artificial CpG sequences and used it as an efficient non-toxic carrier system into cells. Together with the team of Carole Bourquin they demonstrated a selective immune stimulating effect of the DNA complexes by measuring the interleukin secretion of the cells as an indicator for immune activation. Such artificial nanostructures could act in future applications as target-selective delivery vehicles for the development of novel and non-toxic vaccine adjuvants or carrier systems in tumor immunotherapy.

Publication:

Cellular Immunostimulation by CpG-Sequence-Coated DNA Origami Structures. Verena Schüller, Simon Heidegger, Nadja Sandholzer, Philipp Nickels, Nina Suharta, Stefan Endres, Carole Bourquin and Tim Liedl. ACS Nano, 2011

####

For more information, please click here

Copyright © Nanosystems Initiative Munich

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Nanomedicine

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Discoveries

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Announcements

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE