Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Coal Waste Could Provide Eco-Friendly Option to Cement

Jeff Hanson, department of photography, U. of Alabama
Fly Ash material in a University of Alabama laboratory.
Jeff Hanson, department of photography, U. of Alabama

Fly Ash material in a University of Alabama laboratory.

Abstract:
Concrete is the most common construction material used globally, accounting for 70 percent of all construction materials. Though concrete has advantages such as easy application and high availability, it has major disadvantages when considering sustainability.

Coal Waste Could Provide Eco-Friendly Option to Cement

Tuscaloosa, AL | Posted on December 22nd, 2011

Dr. Jialai Wang, a University of Alabama associate professor of civil, construction and environmental engineering, is working on a solution to these environmental problems by finding an alternative to cement use in concrete.
Wang received a $450,000 collaborative grant from the National Science Foundation to develop an inexpensive and eco-friendly construction material with fly ash. While the material is like cement, it eliminates many of its environmental concerns, Wang said.
Fly ash is a fine powder derived from burning coal. Use of these coal waste products conserves space in landfills, in which they would otherwise be dumped. Fly ash can be used to create a stronger and more durable form of concrete, Wang said.
And, because it displaces the use of cement, it eliminates the main disadvantages of cement. First, it eliminates the issue of greenhouse gas emissions, Wang said.
The production of cement releases a large amount of greenhouse gases, which account for 7 percent of the nation's total carbon-dioxide emissions. The achieved emissions reduction is equivalent to eliminating 25 percent of the world's vehicle emissions, he said.
Secondly, fly ash use eliminates the deterioration issues of cement. Cement tends to be highly brittle and weak, Wang said, in comparison to fly-ash materials. Roads and structures built with fly ash last longer and require less maintenance. Additionally, unlike cement, the material is easy to recycle, he said.

As cement materials harden and disintegrate, they release radon, Wang said. A harmful emission that can pose serious health risks, radon has been linked with certain cancers. Fly ash materials release significantly less radon than cement, he said.

Wang's three-year study is focused on perfecting fly-ash materials and developing methods for large-scale production. Fly-ash materials tend to be strong with compression, but brittle with tension. To combat this issue, Wang is experimenting with adding carbon nanotubes to the fly ash.
Carbon nanotubes, or CNTs, are modified forms of carbon with a cylindrical structure. They are spun into long, thin fibers, like yarn, that are tougher and stronger than steel, Wang said.
Adding CNTs to the fly ash not only strengthens the material, but it also makes it multifunctional. In addition, CNTs are excellent electrical and thermal conductors, he said.
By adding CNTs, fly ash materials become electrically conductive. Electric conductivity can be used to enhance melting ice on structures, such as bridges and airport runways, eliminating possible winter hazards.
The conductivity also changes with applied force. As applied force changes, the electric resistance changes. A change in conductivity often indicates damage or increased load to a material.
Therefore, testing the electric resistance of the fly ash materials reinforced with CNTs is a simple way to determine if there is any damage to a structure, he said.
Wang said CNT's can "sense" structural damage, a function called "self-sensing."
"Civil structures are just like the human body," Wang said. "They can be ‘sick.' If no action is taken, there can be serious consequences. Materials with self-sensing abilities can let you know promptly where there is a problem in a structure and catastrophic failure, like the collapse of a bridge, can be avoided."
Wang has received a patent for the technology he developed to combine CNTs with fly ash. The nanotube technology, nicknamed "Pop Tube technology," uses microwave radiation to initiate nanotube formation. The microwaves cause nanotubes to pop out, like popcorn.
The PopTube technology has many advantages compared to existing methods, he said. It requires very simple equipment, can be easily scaled up for large-scale manufacture and is highly energy-efficient and cost-effective.
Wang has partnered with Dr. Shanlin Pan, UA assistant professor of chemistry, and Dr. Xingyu Zhang, an assistant professor of fiber and textile engineering at Auburn University.

The goal of this study is to garner information valuable for further studies in eco-friendly and durable materials. Such materials would, Wang said, have significant social, economic and environmental benefits for the construction industry.

####

For more information, please click here

Contacts:
Chris Bryant
UA media relations
205/348-8323


Source:
Dr. Jialia Wang
205/348-6786

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Construction

Temperature-sensing building material changes color to save energy January 27th, 2023

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022

Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project