Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Coal Waste Could Provide Eco-Friendly Option to Cement

Jeff Hanson, department of photography, U. of Alabama
Fly Ash material in a University of Alabama laboratory.
Jeff Hanson, department of photography, U. of Alabama

Fly Ash material in a University of Alabama laboratory.

Abstract:
Concrete is the most common construction material used globally, accounting for 70 percent of all construction materials. Though concrete has advantages such as easy application and high availability, it has major disadvantages when considering sustainability.

Coal Waste Could Provide Eco-Friendly Option to Cement

Tuscaloosa, AL | Posted on December 22nd, 2011

Dr. Jialai Wang, a University of Alabama associate professor of civil, construction and environmental engineering, is working on a solution to these environmental problems by finding an alternative to cement use in concrete.
Wang received a $450,000 collaborative grant from the National Science Foundation to develop an inexpensive and eco-friendly construction material with fly ash. While the material is like cement, it eliminates many of its environmental concerns, Wang said.
Fly ash is a fine powder derived from burning coal. Use of these coal waste products conserves space in landfills, in which they would otherwise be dumped. Fly ash can be used to create a stronger and more durable form of concrete, Wang said.
And, because it displaces the use of cement, it eliminates the main disadvantages of cement. First, it eliminates the issue of greenhouse gas emissions, Wang said.
The production of cement releases a large amount of greenhouse gases, which account for 7 percent of the nation's total carbon-dioxide emissions. The achieved emissions reduction is equivalent to eliminating 25 percent of the world's vehicle emissions, he said.
Secondly, fly ash use eliminates the deterioration issues of cement. Cement tends to be highly brittle and weak, Wang said, in comparison to fly-ash materials. Roads and structures built with fly ash last longer and require less maintenance. Additionally, unlike cement, the material is easy to recycle, he said.

As cement materials harden and disintegrate, they release radon, Wang said. A harmful emission that can pose serious health risks, radon has been linked with certain cancers. Fly ash materials release significantly less radon than cement, he said.

Wang's three-year study is focused on perfecting fly-ash materials and developing methods for large-scale production. Fly-ash materials tend to be strong with compression, but brittle with tension. To combat this issue, Wang is experimenting with adding carbon nanotubes to the fly ash.
Carbon nanotubes, or CNTs, are modified forms of carbon with a cylindrical structure. They are spun into long, thin fibers, like yarn, that are tougher and stronger than steel, Wang said.
Adding CNTs to the fly ash not only strengthens the material, but it also makes it multifunctional. In addition, CNTs are excellent electrical and thermal conductors, he said.
By adding CNTs, fly ash materials become electrically conductive. Electric conductivity can be used to enhance melting ice on structures, such as bridges and airport runways, eliminating possible winter hazards.
The conductivity also changes with applied force. As applied force changes, the electric resistance changes. A change in conductivity often indicates damage or increased load to a material.
Therefore, testing the electric resistance of the fly ash materials reinforced with CNTs is a simple way to determine if there is any damage to a structure, he said.
Wang said CNT's can "sense" structural damage, a function called "self-sensing."
"Civil structures are just like the human body," Wang said. "They can be ‘sick.' If no action is taken, there can be serious consequences. Materials with self-sensing abilities can let you know promptly where there is a problem in a structure and catastrophic failure, like the collapse of a bridge, can be avoided."
Wang has received a patent for the technology he developed to combine CNTs with fly ash. The nanotube technology, nicknamed "Pop Tube technology," uses microwave radiation to initiate nanotube formation. The microwaves cause nanotubes to pop out, like popcorn.
The PopTube technology has many advantages compared to existing methods, he said. It requires very simple equipment, can be easily scaled up for large-scale manufacture and is highly energy-efficient and cost-effective.
Wang has partnered with Dr. Shanlin Pan, UA assistant professor of chemistry, and Dr. Xingyu Zhang, an assistant professor of fiber and textile engineering at Auburn University.

The goal of this study is to garner information valuable for further studies in eco-friendly and durable materials. Such materials would, Wang said, have significant social, economic and environmental benefits for the construction industry.

####

For more information, please click here

Contacts:
Chris Bryant
UA media relations
205/348-8323


Source:
Dr. Jialia Wang
205/348-6786

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A step closer to understanding quantum mechanics: Swansea University’s physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Discoveries

A step closer to understanding quantum mechanics: Swansea University’s physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Materials/Metamaterials

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Announcements

A step closer to understanding quantum mechanics: Swansea University’s physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

Environment

Single ‘solitons’ promising for optical technologies October 9th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

High-tech electronics made from autumn leaves: New process converts biomass waste into useful electronic devices August 30th, 2017

Nanoparticles pollution rises 30 percent when flex-fuel cars switch from bio to fossil: Study carried out in São Paulo, home to the world's largest flex fuel urban fleet, shows increase of ultrafine particulate matter when ethanol prices rose and consumption fell August 28th, 2017

Construction

Corrosion in real time: UCSB researchers get a nanoscale glimpse of crevice and pitting corrosion as it happens September 14th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Next-gen steel under the microscope March 18th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project