Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Coal Waste Could Provide Eco-Friendly Option to Cement

Jeff Hanson, department of photography, U. of Alabama
Fly Ash material in a University of Alabama laboratory.
Jeff Hanson, department of photography, U. of Alabama

Fly Ash material in a University of Alabama laboratory.

Abstract:
Concrete is the most common construction material used globally, accounting for 70 percent of all construction materials. Though concrete has advantages such as easy application and high availability, it has major disadvantages when considering sustainability.

Coal Waste Could Provide Eco-Friendly Option to Cement

Tuscaloosa, AL | Posted on December 22nd, 2011

Dr. Jialai Wang, a University of Alabama associate professor of civil, construction and environmental engineering, is working on a solution to these environmental problems by finding an alternative to cement use in concrete.
Wang received a $450,000 collaborative grant from the National Science Foundation to develop an inexpensive and eco-friendly construction material with fly ash. While the material is like cement, it eliminates many of its environmental concerns, Wang said.
Fly ash is a fine powder derived from burning coal. Use of these coal waste products conserves space in landfills, in which they would otherwise be dumped. Fly ash can be used to create a stronger and more durable form of concrete, Wang said.
And, because it displaces the use of cement, it eliminates the main disadvantages of cement. First, it eliminates the issue of greenhouse gas emissions, Wang said.
The production of cement releases a large amount of greenhouse gases, which account for 7 percent of the nation's total carbon-dioxide emissions. The achieved emissions reduction is equivalent to eliminating 25 percent of the world's vehicle emissions, he said.
Secondly, fly ash use eliminates the deterioration issues of cement. Cement tends to be highly brittle and weak, Wang said, in comparison to fly-ash materials. Roads and structures built with fly ash last longer and require less maintenance. Additionally, unlike cement, the material is easy to recycle, he said.

As cement materials harden and disintegrate, they release radon, Wang said. A harmful emission that can pose serious health risks, radon has been linked with certain cancers. Fly ash materials release significantly less radon than cement, he said.

Wang's three-year study is focused on perfecting fly-ash materials and developing methods for large-scale production. Fly-ash materials tend to be strong with compression, but brittle with tension. To combat this issue, Wang is experimenting with adding carbon nanotubes to the fly ash.
Carbon nanotubes, or CNTs, are modified forms of carbon with a cylindrical structure. They are spun into long, thin fibers, like yarn, that are tougher and stronger than steel, Wang said.
Adding CNTs to the fly ash not only strengthens the material, but it also makes it multifunctional. In addition, CNTs are excellent electrical and thermal conductors, he said.
By adding CNTs, fly ash materials become electrically conductive. Electric conductivity can be used to enhance melting ice on structures, such as bridges and airport runways, eliminating possible winter hazards.
The conductivity also changes with applied force. As applied force changes, the electric resistance changes. A change in conductivity often indicates damage or increased load to a material.
Therefore, testing the electric resistance of the fly ash materials reinforced with CNTs is a simple way to determine if there is any damage to a structure, he said.
Wang said CNT's can "sense" structural damage, a function called "self-sensing."
"Civil structures are just like the human body," Wang said. "They can be ‘sick.' If no action is taken, there can be serious consequences. Materials with self-sensing abilities can let you know promptly where there is a problem in a structure and catastrophic failure, like the collapse of a bridge, can be avoided."
Wang has received a patent for the technology he developed to combine CNTs with fly ash. The nanotube technology, nicknamed "Pop Tube technology," uses microwave radiation to initiate nanotube formation. The microwaves cause nanotubes to pop out, like popcorn.
The PopTube technology has many advantages compared to existing methods, he said. It requires very simple equipment, can be easily scaled up for large-scale manufacture and is highly energy-efficient and cost-effective.
Wang has partnered with Dr. Shanlin Pan, UA assistant professor of chemistry, and Dr. Xingyu Zhang, an assistant professor of fiber and textile engineering at Auburn University.

The goal of this study is to garner information valuable for further studies in eco-friendly and durable materials. Such materials would, Wang said, have significant social, economic and environmental benefits for the construction industry.

####

For more information, please click here

Contacts:
Chris Bryant
UA media relations
205/348-8323


Source:
Dr. Jialia Wang
205/348-6786

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

JPK reports on research of the Mestroni Lab at the University of Colorado Denver which use the JPK NanoWizard® AFM to help in the characterization of cardiomyopathies April 24th, 2018

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Plasmons triggered in nanotube quantum wells: Rice, Tokyo Metropolitan scientists create platform for unique near-infrared devices March 16th, 2018

Big steps toward control of production of tiny building blocks March 9th, 2018

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

Discoveries

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

JPK reports on research of the Mestroni Lab at the University of Colorado Denver which use the JPK NanoWizard® AFM to help in the characterization of cardiomyopathies April 24th, 2018

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

Materials/Metamaterials

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Individual impurity atoms detectable in graphene April 18th, 2018

Announcements

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

JPK reports on research of the Mestroni Lab at the University of Colorado Denver which use the JPK NanoWizard® AFM to help in the characterization of cardiomyopathies April 24th, 2018

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

Environment

'Sweet spot' in sweet material for hydrogen storage: Study IDs 'white graphene' architecture with unprecedented hydrogen storage capacity March 12th, 2018

Converting CO2 into Usable Energy: Scientists show that single nickel atoms are an efficient, cost-effective catalyst for converting carbon dioxide into useful chemicals March 1st, 2018

Ultra-efficient removal of carbon monoxide using gold nanoparticles on a molecular support: New method and mechanism for state-of-the-art gas purification February 9th, 2018

New filters could enable manufacturers to perform highly-selective chemical separation January 23rd, 2018

Construction

Weak hydrogen bonds key to strong, tough infrastructure: Rice University lab simulates polymer-cement composites to find strongest, toughest materials January 29th, 2018

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Corrosion in real time: UCSB researchers get a nanoscale glimpse of crevice and pitting corrosion as it happens September 14th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project