Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Coal Waste Could Provide Eco-Friendly Option to Cement

Jeff Hanson, department of photography, U. of Alabama
Fly Ash material in a University of Alabama laboratory.
Jeff Hanson, department of photography, U. of Alabama

Fly Ash material in a University of Alabama laboratory.

Abstract:
Concrete is the most common construction material used globally, accounting for 70 percent of all construction materials. Though concrete has advantages such as easy application and high availability, it has major disadvantages when considering sustainability.

Coal Waste Could Provide Eco-Friendly Option to Cement

Tuscaloosa, AL | Posted on December 22nd, 2011

Dr. Jialai Wang, a University of Alabama associate professor of civil, construction and environmental engineering, is working on a solution to these environmental problems by finding an alternative to cement use in concrete.
Wang received a $450,000 collaborative grant from the National Science Foundation to develop an inexpensive and eco-friendly construction material with fly ash. While the material is like cement, it eliminates many of its environmental concerns, Wang said.
Fly ash is a fine powder derived from burning coal. Use of these coal waste products conserves space in landfills, in which they would otherwise be dumped. Fly ash can be used to create a stronger and more durable form of concrete, Wang said.
And, because it displaces the use of cement, it eliminates the main disadvantages of cement. First, it eliminates the issue of greenhouse gas emissions, Wang said.
The production of cement releases a large amount of greenhouse gases, which account for 7 percent of the nation's total carbon-dioxide emissions. The achieved emissions reduction is equivalent to eliminating 25 percent of the world's vehicle emissions, he said.
Secondly, fly ash use eliminates the deterioration issues of cement. Cement tends to be highly brittle and weak, Wang said, in comparison to fly-ash materials. Roads and structures built with fly ash last longer and require less maintenance. Additionally, unlike cement, the material is easy to recycle, he said.

As cement materials harden and disintegrate, they release radon, Wang said. A harmful emission that can pose serious health risks, radon has been linked with certain cancers. Fly ash materials release significantly less radon than cement, he said.

Wang's three-year study is focused on perfecting fly-ash materials and developing methods for large-scale production. Fly-ash materials tend to be strong with compression, but brittle with tension. To combat this issue, Wang is experimenting with adding carbon nanotubes to the fly ash.
Carbon nanotubes, or CNTs, are modified forms of carbon with a cylindrical structure. They are spun into long, thin fibers, like yarn, that are tougher and stronger than steel, Wang said.
Adding CNTs to the fly ash not only strengthens the material, but it also makes it multifunctional. In addition, CNTs are excellent electrical and thermal conductors, he said.
By adding CNTs, fly ash materials become electrically conductive. Electric conductivity can be used to enhance melting ice on structures, such as bridges and airport runways, eliminating possible winter hazards.
The conductivity also changes with applied force. As applied force changes, the electric resistance changes. A change in conductivity often indicates damage or increased load to a material.
Therefore, testing the electric resistance of the fly ash materials reinforced with CNTs is a simple way to determine if there is any damage to a structure, he said.
Wang said CNT's can "sense" structural damage, a function called "self-sensing."
"Civil structures are just like the human body," Wang said. "They can be ‘sick.' If no action is taken, there can be serious consequences. Materials with self-sensing abilities can let you know promptly where there is a problem in a structure and catastrophic failure, like the collapse of a bridge, can be avoided."
Wang has received a patent for the technology he developed to combine CNTs with fly ash. The nanotube technology, nicknamed "Pop Tube technology," uses microwave radiation to initiate nanotube formation. The microwaves cause nanotubes to pop out, like popcorn.
The PopTube technology has many advantages compared to existing methods, he said. It requires very simple equipment, can be easily scaled up for large-scale manufacture and is highly energy-efficient and cost-effective.
Wang has partnered with Dr. Shanlin Pan, UA assistant professor of chemistry, and Dr. Xingyu Zhang, an assistant professor of fiber and textile engineering at Auburn University.

The goal of this study is to garner information valuable for further studies in eco-friendly and durable materials. Such materials would, Wang said, have significant social, economic and environmental benefits for the construction industry.

####

For more information, please click here

Contacts:
Chris Bryant
UA media relations
205/348-8323


Source:
Dr. Jialia Wang
205/348-6786

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Nanotubes/Buckyballs/Fullerenes

Global Carbon Nanotubes (CNT) Market Expected To Reach USD 3.42 Billion By 2022 May 29th, 2015

SouthWest NanoTechnologies Introduces AgeNT™ Transparent Conductor System at SID Display Week, Booth #543 May 28th, 2015

Physicists precisely measure interaction between atoms and carbon surfaces May 28th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

Discoveries

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Materials/Metamaterials

SouthWest NanoTechnologies Introduces AgeNT™ Transparent Conductor System at SID Display Week, Booth #543 May 28th, 2015

Physicists precisely measure interaction between atoms and carbon surfaces May 28th, 2015

Linking superconductivity and structure May 28th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Announcements

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Environment

Collaboration could lead to biodegradable computer chips May 28th, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Directa Plus in Barcelona to present the innovative project GEnIuS for oil spills clean-up activities: The company has created a graphene-based product for the remediation of water contaminated by oil and hydrocarbons May 21st, 2015

Nano-policing pollution May 13th, 2015

Construction

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Iranian Scientists Present Model to Study Mechanical Vibrations of Structures Containing Nanocomposites May 5th, 2015

Nanoparticles Used to Improve Mechanical, Thermal Properties of Cellulose Fibers April 23rd, 2015

Blue Star Opportunities Corp. (BSTO) Completes Major Condo Building Project in Manhattan Residential Area; Company Now Has the Resources to Service the Largest of Construction Projects April 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project