Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NIST Releases First Certified Reference Material for Single-Wall Carbon Nanotubes

Scanning electron microscope image of a typical sample of the NIST single-wall carbon nanotube soot standard reference material. The nanotubes tend to stick together and form smaller and larger bundles. Some of the impurities also are visible. The image shows an area just over a micrometer wide. (Color added for clarity.)
Credit: Vladar, NIST
Scanning electron microscope image of a typical sample of the NIST single-wall carbon nanotube soot standard reference material. The nanotubes tend to stick together and form smaller and larger bundles. Some of the impurities also are visible. The image shows an area just over a micrometer wide. (Color added for clarity.)

Credit: Vladar, NIST

Abstract:
The National Institute of Standards and Technology (NIST) has issued the world's first reference material for single-wall carbon nanotube soot. Distantly related to the soot in your fireplace or in a candle flame, nanotube-laden soot is the primary industrial source of single-wall carbon nanotubes, perhaps the archetype of all nanoscale materials. The new NIST material offers companies and researchers a badly needed source of uniform and well-characterized carbon nanotube soot for material comparisons, as well as chemical and toxicity analysis.

NIST Releases First Certified Reference Material for Single-Wall Carbon Nanotubes

Gaithersburg, MD | Posted on December 21st, 2011

With walls of carbon only one atom thick and looking like a sheet of chicken wire curled into a cylinder, single-wall carbon nanotubes are one of several families of pure carbon materials that, because of their nanoscale size, have special properties. "Single-wall carbon nanotubes," says NIST chemical engineer Jeffery Fagan, "have exquisite optical, mechanical, thermal and electronic properties, and because of their small width but long lengths—think of something like a long piece of hair but 10,000 times thinner—full development of these materials should enable lighter, stronger materials, as well as improve many technologies from sensors to electronics and batteries."
Unfortunately, nanotubes are difficult to produce without significant impurities or in large quantities. Single-wall nanotubes, in particular, have been notorious for their relatively low quality and batch-to-batch variability. They typically are produced in complex processes using small particles of metal catalysts that promote the growth of the nanotubes. The resulting material—often a powder not unlike the soot you would find in your fireplace—has frequently contained large amounts of impurities, such as other forms of carbon, and sometimes significant levels of catalysts.
"One of the issues that this reference material addresses is that there's no homogeneous lot that people can buy to do comparative measurements," says Fagan. "Even batch-to-batch, raw carbon nanotube powder samples have varied so much that there is no interlaboratory consistency. And that's particularly a problem for comparisons such as toxicity measurements. If you bought carbon nanotubes, you were pretty much guaranteed that your sample could be so different from anyone else's samples that either your measurements could be specific to some flaw of your material, or that others might not be able to reproduce what you were doing."
To address these issues, a multidisciplinary research team at NIST has worked to develop the metrology necessary for quantitative single-wall carbon nanotube measurements through a three-prong approach: basic measurement and separation science, documentary protocols and standards through international standards organizations, and now certified reference materials.
The new NIST product, Standard Reference Material (SRM) 2483, "Single-Wall Carbon Nanotubes (Raw Soot)," will directly address the issue of comparability. It is possibly the world's single largest supply of homogeneous, chemically analyzed, carbon nanotube soot where the uniformity of the samples from unit to unit is assured. Each unit of SRM 2483, a glass vial containing 250 milligrams of soot, is certified by NIST for the mass fraction values of several common contaminants: barium, cerium, chlorine, cobalt, dysprosium, europium, gadolinium, lanthanum, molybdenum and samarium. Reference values (values believed to be accurate, but not rising to the level of confidence that NIST certifies) are provided for an additional seven elements.
NIST also provides additional reference data useful for nanotube analysis, including thermal gravimetric and Raman data, as well as informational values for ultraviolet-visible-near-infrared absorbance spectra, near-infrared fluorescence spectra, Raman scattering spectra and scanning electron microscopy images. With these sets of information, purchasers of the material should be able to compare their results against the NIST values and against those from suppliers or after processing, ensuring a consistent point of comparison.

Single units of SRM 2483, "Single-Wall Carbon Nanotubes (Raw Soot)," are available from the NIST Standard Reference Materials Program at www.nist.gov/srm/. See https://www-s.nist.gov/srmors/view_detail.cfm?srm=2483 for details.

Standard Reference Materials are among the most widely distributed and used products from NIST. The agency prepares, analyzes and distributes more than a thousand different materials that are used throughout the world to check the accuracy of instruments and test procedures used in manufacturing, clinical chemistry, environmental monitoring, electronics, criminal forensics and dozens of other fields.

####

About NIST
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Michael Baum
301-975-2763

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Heightened Efficiency in Purification of Wastewater Using Nanomembranes March 3rd, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

Laboratories

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Dendrite eraser: New electrolyte rids batteries of short-circuiting fibers: Solution enables a battery with both high efficiency & current density February 24th, 2015

Researchers synthesize material for efficient plasmonic devices in mid-infrared range February 16th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

New nanodevice defeats drug resistance: Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs March 2nd, 2015

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Nanotubes/Buckyballs

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Half spheres for molecular circuits: Corannulene shows promising electronic properties February 17th, 2015

Announcements

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Heightened Efficiency in Purification of Wastewater Using Nanomembranes March 3rd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE